National Recovery Plan for Leadbeater’s possum (*Gymnobelideus leadbeateri*)

February 2016
The National Recovery Plan for Leadbeater’s possum (Gymnobelideus leadbeateri) is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 International licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: https://creativecommons.org/licenses/by/4.0/

This report should be attributed as ‘National Recovery Plan for Leadbeater’s possum (Gymnobelideus leadbeateri), Commonwealth of Australia 2016’.

The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party]’.

The Species Profile and Threats Database pages linked to this recovery plan is obtainable from: http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl

Cover photo: Tamara Leitch and Claire McCall
CONTENTS

FIGURES .. 5
TABLES ... 5
1. SUMMARY ... 6
 Background ... 6
 Recovery Plan context .. 6
 Long-term recovery objective ... 7
 Recovery Objectives, Actions and Performance Criteria for the lifetime of this Plan 7
2. INTRODUCTION .. 11
 2.1. Current (2016) conservation status of Leadbeater’s possum .. 11
 2.2. About this Recovery Plan ... 11
 2.3. Urgent need and emergency response .. 12
 2.4. Significance of Leadbeater’s possum .. 15
 2.5. Consultation ... 16
3. BACKGROUND INFORMATION INFORMING RECOVERY ACTION ... 16
 3.1. Description of the species .. 16
 3.2. Distribution ... 17
 3.2.1. Former distribution .. 17
 3.2.2. Current distribution ... 18
 3.2.3. Tenure and land use of the current distribution .. 21
 3.2.4. Recent decline in distribution ... 22
 3.2.5. Future range ... 23
 3.2.6. Survey techniques and effort .. 23
 3.3. Population size ... 24
 3.3.1. Estimates of current population size .. 24
 3.3.2. Rates of current and projected population decline ... 25
 3.3.3. Subpopulation structure and genetic variation ... 27
 3.3.4. Population monitoring ... 28
 3.4. Habitat .. 29
 3.4.1. Key habitat features .. 29
 3.4.2. Montane ash forest habitat ... 30
 3.4.3. Decline in habitat extent, suitability and connectivity: montane ash forest 33
 3.4.4. Sub-alpine (snow gum) woodlands .. 35
 3.4.5. Decline in habitat extent, suitability and connectivity: sub-alpine snow gum woodlands 35
 3.4.6. Lowland swamp forest .. 36
 3.4.7. Decline in habitat extent, suitability and connectivity: lowland swamp forest 36
 3.4.8. Habitat augmentation ... 37
 3.4.9. Habitat critical to survival .. 38
 3.5. Diet ... 38
 3.5.1. Foraging and diet .. 38
3.5.2. Food supplementation39
3.6. Social structure40
3.7. Demography and breeding biology .. .40
 3.7.1. Demography and reproduction40
 3.7.2. Captive breeding and translocation41
 3.7.3. Causes of mortality42
4. THREATS43
 4.1. Historical causes of decline .. .43
 4.2. Current threatening processes .. .43
 4.2.1. Impacts of severe fire and changes in fire regime44
 4.2.2. Timber harvesting45
 4.2.3. Reduction in the abundance of hollow-bearing trees47
 4.2.4. Eucalypt dieback and altered hydrology (for lowland subpopulation)48
 4.2.5. Population fragmentation48
 4.2.6. Climate change48
5. LEGISLATIVE, POLICY AND PLANNING CONTEXT49
 5.1. The legislative and the policy environment49
 5.2. National threatened species policy... .50
 5.3. Victorian state policy and planning .. .50
 5.4. National forest policy51
 5.5. International agreements and obligations53
 5.6. Implications for this Recovery Plan54
6. CONSERVATION AND MANAGEMENT HISTORY54
 6.1. Existing conservation measures .. .54
 6.2. Other previously proposed conservation initiatives59
7. Recovery objectives and actions .. .60
 7.1. Context .. .60
 7.2 Recovery objectives, actions and performance measures61
 7.2.1. Long-term recovery objective61
 7.2.2. Recovery objectives, actions, outcomes and performance criteria for the lifetime of this Plan .. .62
8. PLAN IMPLEMENTATION .. .76
 8.1. Implementation schedule and costs76
 8.2. Monitoring, evaluation and adaptation of the Recovery Plan81
 8.2.1. Monitoring and review .. .81
 8.2.2. Variation and adaptation81
 8.3. Potential benefits and impacts associated with implementation . .81
 8.3.1. Broader biodiversity benefits .. .81
 8.3.2. Social and economic considerations84
 8.4. Affected interests .. .86
 8.4.1. Role and interest of Indigenous groups88
ACKNOWLEDGEMENTS .. 88

ACRONYMS AND DEFINITIONS .. 88

10.1. Acronyms .. 88
10.2. Definitions ... 89

REFERENCES ... 93

FIGURES

Figure 1: Examples of modelling of estimated historic and projected population size of Leadbeater’s possum ... 14

Figure 2: Occupancy model predicting areas most likely to be currently occupied based on stratified sampling in 2012. ... 19

Figure 3: Observed and projected changes in the average density of large hollow-bearing trees in mountain ash forests in the Central Highlands. ... 33

Figure 4: The age class of dominant trees in stands of montane ash forests in the Central Highlands. Decade indicates the date at which the trees germinated .. 34

TABLES

Table 1: Tenure of lands in ‘potential habitat’ of Leadbeater’s possum .. 21
Table 2: Tenure of lands in modelled distribution of Leadbeater’s possum ... 21
Table 3: Estimates of population size for Leadbeater’s possum .. 25
Table 4: Indicative time frames, priorities and estimated costs ($000’s) of recovery actions over the first five years of implementation .. 78
Table 5: Listed threatened species and ecological communities that occur in areas likely to be affected by this plan ... 83
1. SUMMARY

Background

This Recovery Plan replaces the initial (1997) Recovery Plan for Leadbeater’s possum *Gymnobelideus leadbeateri*. Leadbeater’s possum is a phylogenetically distinctive species and is the only mammal species endemic to Victoria.

This Plan recognises that although substantial research and conservation achievements have been made associated with the previous Recovery Plan and other initiatives, the status of Leadbeater’s possum is declining severely, such that it has recently (April 2015) been up-listed to Critically Endangered under national legislation. Based on the extent of recent, current and projected decline, the 2015 Australian Threatened Species Strategy listed this species as one of only two mammal species with ‘emergency’ priority for conservation management.

This Plan focuses particularly on the main threat to this species – decline in the extent, quality and connectivity of suitable habitat, with this decline due mostly to historic, current and projected severe bushfire and changed fire regimes, timber harvesting and loss of hollow-bearing trees. Conservation planning for Leadbeater’s possum is a long-term proposition and commitment. Because of the impacts of historic fire and other disturbances, the availability of suitable habitat is predicted to decline for at least another 40-50 years, such that it will be extremely challenging to achieve recovery of this species in the short term. Actions taken now to enhance its conservation status are unlikely to reverse the current decline in the extent of its suitable habitat or of its population over the 10-year period of this plan, but they will help to slow this rate of decline. And importantly, actions taken or not taken now will affect its likelihood of extinction over a 50 to 100 year timeframe.

Recovery Plan context

The recovery objectives and actions proposed here are informed by a set of general principles and requirements. These include:

(1) that the pre-eminent purpose of this Recovery Plan is to stop the decline and support the recovery of Leadbeater’s possum so that its chances of long-term survival in nature are maximised;

(2) that recovery objectives and actions delineated here are informed appropriately by a very substantial evidence base arising from intensive research that has spanned several decades and is ongoing, and that evidence from research should continue to inform recovery actions;

(3) that while existing recovery actions have contributed to some conservation advances, they have been, and are likely to continue to be, insufficient to recover the species, hence a substantially new or more committed management response is required;

(4) that the overwhelming majority of the known population of Leadbeater’s possum is confined to the Central Highlands montane ash forest, and that the development of effective conservation management actions – including reducing the risk of landscape-scale fire – for this species in this region is most critical to the species’ likelihood of recovery;

(5) but that, on current trends, there is an unacceptably high risk of extinction for the species in this region, especially through extensive bushfire, and hence there is a need to try to spread this risk through attempts to establish subpopulations of the species in the most suitable habitat outside this region;
(6) that conservation effort needs to attempt to secure both the Central Highlands (montane ash and snow gum) subpopulations and the lowland swamp forest subpopulation (an Evolutionarily Significant Unit), with this latter one particularly at risk of imminent extinction;

(7) that conservation success will not be achieved by management actions alone, but will depend also upon refinement and complementarity of existing and future planning and policy settings, such that these contribute appropriately to maximising the chances of long-term survival of Leadbeater's possum in nature; and

(8) that there remain important uncertainties about some candidate conservation management actions (such as translocation, effective fire mitigation options, accelerated hollow development), so this Recovery Plan should address these knowledge gaps and be flexible, responsive to new information, and capable of adaptive management.

Long-term recovery objective

To increase the extent, quality and connectivity of currently and prospectively suitable habitat, and its occupancy by Leadbeater's possum, in order to maximise the probability of persistence of the species.

This long-term objective would require the following outcomes:

- the total population size of Leadbeater’s possum stabilises and then increases over a 20-50 year period from now;
- risks to Leadbeater’s possum from catastrophe (notably extensive, severe bushfire) are managed effectively through securing viable subpopulations across an area that is at least as extensive as its distribution immediately prior to the 2009 bushfires;
- the extent and continuity of high quality habitat and old-growth forest is substantially increased;
- there is an ongoing commitment, with appropriate resourcing, to effective and enduring management of threats to this species, including effective management that results in a pattern of bushfire frequency and severity that is less detrimental to this species (and its forest environment) than that presently prevailing;
- the distinctive subpopulation in the lowland swamp forest is retained and its population size and the extent and suitability of its habitat are substantially greater than at present.

Recovery Objectives, Actions and Performance Criteria for the lifetime of this Plan

Objective 1: All relevant existing and future planning and policy settings are reviewed and where required, refined and implemented in a manner that contributes appropriately to maximising the chances of long-term survival of Leadbeater’s possum in nature.

Action 1.1. Review and, where required, revise existing relevant planning and policy settings to ensure that they provide for maximising the chances of long-term survival of Leadbeater’s possum.

Action 1.2. Ensure that future relevant planning and policy settings provide for maximising the chances of long-term survival of Leadbeater's possum.

Action 1.3. Ensure coordination between relevant planning and policy settings to maximise the chances of long-term survival of Leadbeater’s possum.
Objective 2: A whole of landscape management regime is in place ensuring that all currently suitable and prospective habitat across the species’ known range is maintained, enhanced and effectively managed to maximise its suitability for Leadbeater’s possum.

Action 2.1. Enhance existing levels of protection for areas in which colonies are not known but may be present, by undertaking pre-harvest surveys in all coupes prior to proposed timber harvesting. If these surveys detect Leadbeater’s possum, the colonies must be protected from harvesting.

Action 2.2. Assess the feasibility, risks and cost-effectiveness of fire management options that seek to deliver long-term, strategic and landscape scale enhancement of the extent and quality of current and prospective suitable habitat. Develop and implement fire management that effectively secures and promotes long-term, strategic and effective protection of known colonies and suitable habitat.

Action 2.3. Enhance existing levels of protection for important habitat features by protecting and buffering all live and dead hollow-bearing trees in montane ash forests within the distribution of Leadbeater’s possum.

Action 2.4. Review the conservation effectiveness of timber harvesting regulatory prescriptions and related guidelines relevant to the protection of known Leadbeater’s possum colonies and habitat, and refine these prescriptions and guidelines to provide more effective conservation outcomes.

Action 2.5. Refine and update occupancy and other relevant distributional and population viability modelling across the full range of the species (incorporating finer-scale mapping of key habitat attributes, such as large hollow-bearing trees and understorey density).

Action 2.6. Based on models developed in Action 2.5, undertake landscape scale land-use planning that provides options for conservation of suitable habitat now and in the future to ensure an acceptably high likelihood of persistence (i.e. at least 99% over 100 year period) for Leadbeater’s possum.

Action 2.7. Expand the dedicated reserve system to incorporate sufficient areas of current and prospective suitable habitat to ensure that it is adequate for the long-term conservation of Leadbeater’s possum.

Action 2.8. Assess the practicality and effectiveness of habitat augmentation including the provision of nest boxes, artificially excavated hollows, or manipulation of understorey. Where benefits can be obtained effectively, strategically implement these to enhance the current and projected extent of suitable habitat in the Central Highlands.

Action 2.9. Enhance habitat suitability and extent for lowland swamp forest habitat.

Objective 3: Where there is net long-term benefit (i.e. likelihood of increase in overall population viability), translocate individuals or colonies within and adjacent to the known range.

Action 3.1. Identify priority areas within and adjacent to the known range to which translocations may provide benefit to the possum’s population viability. Assess the risks, potential impacts upon existing subpopulations, benefits, likelihood of success,
and cost-effectiveness of translocation options. Develop appropriate protocols for use and implementation of translocation (most likely ‘wild-to-wild’ introductions).

Action 3.2. Assess the risks, benefits, practicality, cost-effectiveness and consequences of ‘gene pool mixing’ to increase the viability of the lowland subpopulation.

Action 3.3. Where Actions 3.1 and 3.2 indicate likelihood of net benefit, undertake carefully monitored trial translocations, and – if successful – extend translocations to other priority areas.

Objective 4: Seek to locate, or establish, additional populations outside the core range of the Central Highlands.

Action 4.1. Using recently developed survey approaches, survey potentially suitable areas (in Victoria) outside the known range.

Action 4.2. If such surveys locate ‘new’ existing populations (beyond the Central Highlands), assess their status, population size, genetic affinities, habitat relationships, extent of suitable and prospective habitat and management requirements; and implement such management.

Action 4.3. If such surveys fail to locate existing populations, identify the most suitable candidate areas for translocation.

Action 4.4. Assess the welfare risks, likelihood of success, cost-effectiveness, and potential impacts upon existing populations of translocations to those areas outside the current range considered most practical and likely to result in the establishment of new viable subpopulations. If considered to have significant benefits, implement such translocations.

Objective 5: Targeted research addresses key knowledge gaps such that management options are better informed and management actions more effective.

Action 5.1. Establish an ongoing research forum to enhance existing collaboration among researchers, and between researchers, managers and other interested parties, to make the most effective use of research actions and to identify and address any further key knowledge gaps.

Action 5.2. Undertake research that provides more robust knowledge of key demographic and other ecological characteristics relevant to conservation management, specifically including dispersal characteristics and population size.

Action 5.3. Investigate key aspects of the post-fire ecology of Leadbeater’s possum. This research should include at least: (i) assessing current hollow availability and the importance of large dead and any live hollow-bearing trees in the burnt landscape; (ii) investigating hollow development within trees that were 1939 regrowth before being burnt to determine their potential to provide nesting sites into the future; and (iii) investigate persistence of colonies within fire refuges surrounded by burnt areas to determine if they will be effective sources for natural recolonisation or if translocations will be required to accelerate recolonisation of the regenerated burnt areas.

Action 5.4. Design and implement experimental trials that rigorously assess the relative benefits of prescriptions, actions and other management options, in a manner that allows results to inform ongoing refinement of those prescriptions and actions and the Plan itself.
Objective 6: An integrated monitoring program is effectively implemented (and maintained) that publicly reports in a timely manner on possum status, existing and prospective habitat extent, quality and connectivity, and effectiveness of management actions.

Action 6.1. Collate existing monitoring data and programs (for population trajectories, extent and suitability of habitat, and management effectiveness). Maintain, enhance or develop new monitoring programs to ensure an integrated monitoring and survey program across all tenures and management zones and develop an effective public reporting of monitoring results.

Action 6.2. Identify key trigger points or thresholds in monitoring results that would catalyse priority emergency response (and identify such emergency response options).

Action 6.3. Where translocations are proposed, design translocation trials in a manner that allows for reporting on success or failure, and those factors that contribute to this fate. Monitor those trials, and use results to refine the efficacy of translocation protocols, or to assess critically whether they are of net benefit.

Action 6.4. Monitor the extent of success (including cost-effectiveness and collateral benefits) of management actions individually and collectively, and use such information as appropriate to refine actions.

Objective 7: All stakeholders support and where relevant are involved in the implementation of the Plan.

Action 7.1. Establish (or build from existing mechanisms) and maintain an effective recovery team or similar governance model to oversee implementation of the Recovery Plan, and ensure effective and timely operation of such a team.

Action 7.2. Involve the community in Leadbeater’s possum recovery.

Action 7.3. Provide enhanced opportunities for the participation of Indigenous groups in research, monitoring, management and other components of this Plan.

Action 7.4. Promote and publicise the Recovery Plan and recovery effort.

Objective 8: Ensure effective and adaptive implementation and management oversight of the Plan including adequate resourcing.

Action 8.1. All partners in the Plan coordinate and adequately resource implementation to achieve objectives through adaptive management and cost-effective delivery.

Action 8.2. Establish appropriate governance and protocols to be able to respond to emergency events.

Action 8.3. Monitor the extent of implementation of management actions.

Action 8.4. Report regularly on performance effectiveness of this Recovery Plan, including a formal review at 5 years, and adapt as required.
2. **INTRODUCTION**

2.1. **Current (2016) conservation status of Leadbeater’s possum**

Leadbeater’s possum is currently listed under the following legislation and advisory lists.

Environment Protection and Biodiversity Conservation Act 1999: Critically Endangered
- uplisted in 2015, previously (from 2000) listed as Endangered;
- eligibility listing criterion 1: A2(c) A3(c) – a very severe (>80%) decline in population size over the recent past (i.e. over the last three possum generations (=18 years)) based on decline in the area of occupancy, extent of occurrence and/or quality of habitat, and a projected future (over the next 18 years) very severe decline in population size based on these same parameters.

Flora and Fauna Guarantee Act 1988 (Victoria): threatened
Advisory List of Threatened Vertebrate Fauna in Victoria: Endangered
IUCN Red List of Threatened Species: Endangered.

2.2. **About this Recovery Plan**

This document constitutes the National Recovery Plan for Leadbeater’s possum *Gymnobelideus leadbeateri*. The plan considers the conservation requirements of the species across (and beyond) its range and identifies the actions to stop the decline, and support the recovery, of the species such that its chances of long-term survival in nature are maximised.

This plan replaces the previous ‘Leadbeater’s possum (*Gymnobelideus leadbeateri*) Recovery Plan’ (Macfarlane *et al.* 1997) in force since its adoption in November 1997. The objective of the 1997 plan was to downlist Leadbeater’s possum from Endangered to Vulnerable within ten years. A recent review of the previous Recovery Plan (http://www.environment.gov.au/biodiversity/threatened/recovery-plans/comment/draft-recovery-plan-leadbeaters-possum) concluded that most recovery actions had been largely implemented over the life of the plan and a range of measures had been introduced to protect Leadbeater’s possum habitat. Notwithstanding such effort, the current and projected trends for the species and its habitat are of continuing decline. The review recommended that future recovery actions focus on maintaining and where possible improving the protection of existing and prospective habitat, and continuation of coordinated monitoring for population trends.

Even though there have been substantial ongoing planning and management actions undertaken to protect Leadbeater’s possum, including the implementation of all 13 recommendations from the Leadbeater’s Possum Advisory Group established in 2013, the beneficial outcomes of these actions have been substantially outweighed by a range of detrimental factors such that the (Threatened Species Scientific Committee 2015) considered there had been a very severe decline in the abundance of Leadbeater’s possum since 1997. That decline has caused the conservation status of the species to be uplisted (on 22 April 2015) to Critically Endangered on the list of threatened species under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act).
This new Recovery Plan has been developed in response to several key changes over the life of the previous Plan including:

- the continuing and projected decline in the species' population size and the extent and quality of its habitat;
- new information on the species' ecology, distribution, habitat and management;
- lessons learned from the previous Recovery Plan; and
- a need to reassess some policies, management regulations and guidelines to improve the conservation prospects for the species.

This plan builds upon, but seeks to substantially advance from, the set of actions outlined in the 1997 Recovery Plan, and on previous and current conservation measures being undertaken or proposed by the Victorian Government and its agencies, academics and community groups, and it incorporates new research findings on this species.

2.3. Urgent need and emergency response

All Recovery Plans describe priority management needs for species that are threatened with extinction. However, this Recovery Plan has particular urgency and need for extraordinary conservation management responses. This need is explicitly recognised in the Australian government’s threatened species strategy (https://www.environment.gov.au/biodiversity/threatened/publications/strategy-home), which identified Leadbeater’s possum as one of only two mammal and two bird species requiring ‘emergency intervention’. The need for emergency intervention is further reinforced in the Australian government’s Leadbeater’s Possum Action Plan of August 2015 which identified that within one year a new Recovery Plan would be completed, encompassing a package of actions seeking to reverse the decline of Leadbeater’s possum (https://www.environment.gov.au/biodiversity/threatened/publications/leadbeaters-possum-action-plan).

In its assessment of the conservation status of this species, the Threatened Species Scientific Committee (2015) concluded that the population of the species (explicitly as informed by data on its area of occupancy, extent of occurrence and/or quality of habitat) had declined by more than 80% over its last three generations (18 years) and, furthermore, that it was projected to decline by more than 80% over its next three generations: collectively, an estimated population decline of more than 96% over a 36 year period, despite a suite of existing conservation planning and management actions.

Evidence of this very severe decline derives from several explicit monitoring and modelling assessments of trends in abundance and habitat availability. Zoos Victoria has monitored the total size of the ‘lowland’ subpopulation at Yellingbo over the last 15 years, with these results showing a very severe and ongoing deterioration over recent years (from more than 110 individuals in 2003 to fewer than 50 individuals in 2015), notwithstanding a program of substantial and intensive research and conservation management actions (Harley 2012; Harley 2016).

The abundance of Leadbeater's possum has also been monitored in snow gum woodlands on Lake Mountain plateau since 2003, with consistent sampling since 2008 (when there were 28 known colonies with an estimated 200-300 individuals) to 2015 (when there were fewer than 10 remaining individuals) (Harley 2016). Trends in this population are
representative of many areas subjected at least in part to the impacts of the extensive and severe 2009 bushfires.

There has been a major (ca. 160 sites) monitoring program for Leadbeater’s possum (and other hollow-dependent mammal species) in the Victorian montane ash forest extending for over 30 years, by David Lindenmayer and associates from the Australian National University (Lindenmayer et al. 2003). Population trends have varied over this period. Initial results indicated decline in abundance of Leadbeater’s possum at monitoring sites over the period 1987 to 2001 (Lindenmayer et al. 2003), although no significant trend in abundance was apparent over the period 1997 to 2008 (Lindenmayer et al. 2011b; Lindenmayer et al. 2014b). Subsequent monitoring of these sites has demonstrated the almost complete loss of possums at all sites burnt by the 2009 bushfires which affected approximately a third of the total potential range of the species, and affected both reserves and state forests (Lindenmayer et al. 2013c).

An assessment of past, current and projected trends for the species is also possible through analysis of the availability of its key habitat features, particularly the availability of old hollow-bearing trees. A range of assessments has been developed for such availability in montane ash forests in the Victorian Central Highlands. These consistently describe severe and ongoing reduction in the abundance of hollow-bearing trees, and hence the extent of suitable habitat, with ongoing decline projected for at least another 50 years (Lindenmayer et al. 1990b; Lindenmayer et al. 2015b). This decline is largely due to the ongoing collapse of large hollow-bearing trees killed in the extensive 1939 bushfires, reduction in mature ash forest extent through historic, ongoing and projected timber harvesting, and the impacts of the 2009 bushfire. Any future extensive bushfire will further exacerbate this severe decline in available habitat.

The population size of Leadbeater’s possum in the dedicated Leadbeater’s possum reserve system, comprising part of its range, has recently been retrospectively modelled and projected, with such models likely to be broadly representative of trends in the full extent of its range (Lumsden et al. 2013). Figure 1a presents such a model for the ‘best-case’ (and hence unlikely) scenario of no increased habitat decline or future fires. This modelling indicates the assumed major population loss (a population bottleneck) due to the 1939 bushfire, an increase in numbers as the forest regenerated, a gradual decline from the 1990s attributable mostly to incremental loss of hollow-bearing trees killed in the 1939 fires and wattle senescence, then a sharp loss in Leadbeater’s possums associated with the 2009 fires and ongoing major declines extending for at least another 50 to 60 years due to continuing decline in habitat extent and quality. Expected future declines become more severe under more realistic scenarios that include at least one severe bushfire. For example, Figure 1b presents the outlook for the species when a future 50% decline in hollow-bearing trees and an extensive bushfire burning 50% of the reserve in 2020 (for example) are factored into the model (Lumsden et al. 2013). These projections of decline will become more severe when likely climate change is considered.
Figure 1. Examples of modelling of estimated historic and projected population size of Leadbeater’s possum (from Lumsden et al. (2013)). This modelling is for within the Leadbeater’s possum reserve (30,500 ha). The range of values at any time presented in this graph reflects the variation associated with repeated runs of the model. Note that trends rather than absolute population size estimates (in this case, the relative number of adult females) are the most informative aspect of these graphs, as current and especially historic and projected, population sizes are not well resolved. This is particularly the case for the population prior to the very extensive 1939 bushfires (with such high level of uncertainty signified as ? in these graphs).

(a) Modelling assuming no future fires or increased rate of habitat decline.

Collectively, these monitoring and modelling data demonstrate that the conservation future for Leadbeater’s possum is highly precarious. Under current conditions, it is predicted that the species will continue on a severe downward trajectory from its current highly imperilled status for at least another 50 years, before regrowth trees from the 1939 fires start to form hollows (i.e. the next five to six decades may represent a ‘bottleneck’) after which the Leadbeater’s possum habitat extent may increase. Depending upon their severity, incidence and extent, future bushfires will exacerbate these predicted trends for decline, and further delay (or render implausible) any future recovery.

This Recovery Plan recognises that there has been very substantial investment over several decades in research and management actions, and some notable conservation policy initiatives, with these efforts contributing significantly to enhanced knowledge of the species and to the maintenance of some subpopulations. Notwithstanding such effort, the current and projected trends for the species and its habitat are for a severe decline. Existing management and protective mechanisms are demonstrably insufficient to stop the decline and support the recovery of the species. A concerted long term vision, commitment and management effort, with adequate resourcing and policy settings, is necessary to protect this species into the future.

2.4. Significance of Leadbeater’s possum

Leadbeater’s possum is taxonomically distinctive as it is the only species in the genus *Gymnobelideus*, otherwise most closely related to the tropical striped possums *Dactylopsila* (Edwards and Westerman 1992; Osborne and Christidis 2001; Cardillo *et al.* 2004). Recognising this evolutionary distinctiveness and its proximity to extinction, it is rated as one of the world’s 100 highest priority mammal species for conservation (http://www.edgeofexistence.org/mammals/top_100.php). Leadbeater’s possum is also included as one of 12 Australian threatened mammal species accorded high priority in the 2015 Australian Threatened Species Strategy (https://www.environment.gov.au/biodiversity/threatened/publications/strategy-home), and (its lowland subpopulation) is listed as one of the 20 priority threatened species in Zoos Victoria’s Fighting Extinction program (http://www.zoo.org.au/fighting-extinction).

Leadbeater’s possum has high cultural significance, as one of Victoria’s two state terrestrial faunal emblems, and is Victoria’s only endemic mammal species. The species is the focus of an active and committed conservation group (Friends of the Leadbeater’s Possum), and has substantial community profile and interest.

Leadbeater’s possum is an ‘indicator’, ‘focal’, ‘umbrella’ or ‘flagship’ species for the conservation of its montane ash forest environment and biodiversity more generally (Lindenmayer and Cunningham 1997; Lindenmayer *et al.* 2014b), because the main threats that affect this high profile species are likely to affect many other less iconic species in this ecosystem. Hence, any conservation responses for Leadbeater’s possum are likely to benefit many other species, particularly including other hollow-dwelling mammals and birds, such as the sooty owl *Tyto tenebricosa* (listed as threatened under the Victorian *Flora and Fauna Guarantee Act*, and as Vulnerable in its associated advisory list) and greater glider *Petauroides volans* (listed as Vulnerable in the Victorian advisory list).
Conservation measures taken for the Leadbeater’s possum may also be expected to benefit its main habitat, mountain ash forest in the Central Highlands, which was recently assessed as a Critically Endangered ecosystem using IUCN criteria (Burns et al. 2015). Furthermore, the small subpopulation of Leadbeater’s possum in lowland swamp forest has conservation significance as an example of a relictual distribution with importance for the longer-term evolutionary potential for the species, and because the small site at which it occurs (Yellingbo Nature Conservation Reserve) supports both of Victoria’s highly threatened terrestrial fauna emblems and has been the subject of substantial conservation effort extending over several decades.

2.5. Consultation

As outlined in the Australian Government’s Leadbeater’s Possum Action Plan (www.environment.gov.au/biodiversity/threatened/publications/leadbeaters-possum-action-plan), input was sought from key stakeholders from the environment, science and forestry sectors, in developing this draft Plan. Gregory Andrews, the Threatened Species Commissioner facilitated two meetings of key stakeholders, in Melbourne on the 21 October 2015 and 11 December 2015. These meetings enabled stakeholder representatives to discuss and provide comment on their expectations for the Recovery Plan, and provide preliminary feedback on an initial consultation draft of the Recovery Plan. Those comments helped shape the development of this draft Plan for public consideration.

3. BACKGROUND INFORMATION INFORMING RECOVERY ACTION

This section highlights aspects of the biology of Leadbeater’s possum that are most relevant to its conservation status and recovery management. Wherever possible the implications for management are drawn out from the biological information below and explicitly stated. More detailed accounts of the species’ biology are available elsewhere (Smith et al. 1985; Menkhorst and Lumsden 1995; Lindenmayer et al. 2015b).

Leadbeater’s possum has been the focus of substantial research effort extending for at least 30 years: indeed ‘Leadbeater’s possum is arguably amongst the best studied endangered animals globally, and certainly in Australia’ (Lindenmayer et al. 2014a). This research has revealed much of the ecology of this species. However, notwithstanding this research effort, there are still some important knowledge gaps that constrain the evaluation of options for, and impede the implementation of, management responses. Where relevant, these information gaps are also identified below, as priorities for additional research.

3.1. Description of the species

Leadbeater’s possum is a small (100-160 g), nocturnal, arboreal possum. It has some superficial resemblance to the far more abundant and widespread (but not closely related) sugar glider *Petaurus breviceps*, but is notably distinct from that species in not possessing a gliding membrane.
3.2. Distribution

Leadbeater’s possum is endemic to Victoria. Its former and current distributions are poorly resolved, with a sparse fossil and sub-fossil record, uncertainty about the locations of some historic records, and some uncertainty about the full extent of its current distribution (Harley 2004c).

Because Leadbeater’s possum has highly specific habitat requirements, there are very strong linkages between the current status and trends in its habitat extent (and suitability), distribution and population. Accordingly, there is some complementary material presented in these sections below.

3.2.1. Former distribution

The past distribution of Leadbeater’s possum is not well defined, but it was formerly more widespread. Fossil deposits are known from near Buchan (in east Gippsland) and the Wombeyan Caves and Marble Arch in south-eastern New South Wales (Harley 2004c).

Sub-fossil deposits (from owl pellets, probably aged about 100-400 years before present) demonstrate that it formerly occurred in foothill and montane forests of south, central and east Gippsland, from which it is not now known (Bilney et al. 2006; Bilney et al. 2010; Bilney 2014).

Of its known distribution since European settlement, there is a single isolated record from 1909 in north-eastern Victoria (‘Sunnyside’, Mt Wills) (Brazenor 1932), a specimen held at Beechworth museum but without locality data (Lindenmayer and Dixon 1992), and four records from south-western Gippsland (including Bass River and Koo-Wee-Rup swamp area near Tynong) collected between 1867 and 1910 (Myroniuk and Seebeck 1992; Menkhorst and Lumsden 1995).

Harley (2004c) collated several other historic and recent records unsupported by confirmed specimens, beyond its currently known range. These include a record of hair identified from a fox scat collected in 1975 in the Dartmouth Dam area of north-eastern Victoria (Brunner et al. 1976), regarded by Harley (2004c) as ‘plausible’; a hair sample reported in 1995 from Black Forest near Macedon (south-central Victoria) (Larwill et al. 2003); and single unconfirmed sightings from a few other sites in north-eastern Victoria, the Strzelecki Ranges in south Gippsland, and the Otway Ranges. Some subsequent sampling at most of these sites has failed to corroborate these records (Harley 2004a), but in at least some of these areas, surveys have not necessarily been adequate to detect this species or to discount its presence.

A substantial decline from the past to the current range is evident from the fossil record and from more recent historic habitat loss (especially in its former lowland swamp forest range). Distributional decline is also inferred from bioclimatic modelling, which suggests a range reduction of 88% over the last 250 years (Burgman and Lindenmayer 1998), and from genetic analyses (Hansen et al. 2009).
Priority research needs to enhance management:

- A substantial survey effort incorporating new techniques (see 3.2.6. Survey techniques and effort) should be extended to more rigorously evaluate whether Leadbeater’s possum occurs in potentially suitable areas (including sites of previous unconfirmed reports) outside the Central Highlands, and to evaluate the extent of current and prospective habitat across this larger range.

3.2.2. Current distribution

Since its ‘rediscovery’ in 1961, almost all records have been restricted to a ca. 3000 km² area (Menkhorst and Lumsden 1995), or about ca. 70 km (north-south) x 80 km (east-west), in the Central Highlands, roughly bounded by Toolangi in the west, Rubicon in the north, Mt Baw Baw in the east and Beenak in the south.

The exception to this core range is the isolated (and remnant) subpopulation in lowland swamp forest at Yellingbo Nature Conservation Reserve, where it occurs in an occupied area of less than 20 ha, along a 6 km riparian strip, ca. 16 km distant from the nearest montane forest population (Smales 1994; Harley 2002; Harley 2004c; Harley et al. 2005).

Within its main range in the Central Highlands, it is patchily distributed (Macfarlane et al. 1997), with distributional gaps due to areas of unsuitable vegetation types (those that are not dominated by ash forests or by sub-alpine (snow gum) woodlands), or due to temporary or permanent loss of suitable habitat because of loss of hollows, fires or timber harvesting. Its actual current distribution is imprecisely known because sampling effort dictates that not all potentially suitable habitat can be (or has been) surveyed, and because its persistence varies temporally due to hollow abundance, fire, timber harvesting, spatial context and other factors. Recent extensive surveys are helping to increase knowledge of the distribution throughout the Central Highlands (Lumsden et al. 2013; Nelson et al. 2015; Harley 2016).

Its expected former, current and projected distribution has been modelled based variably on bioclimatic, vegetation, fire history and other spatial context factors (Threatened Species Scientific Committee 2015): all such models will have some constraints, imprecision and interpretational caveats.

The Victorian Leadbeater’s Possum Advisory Group (2014b) noted that there was just over 200,000 ha of ‘potential habitat’ (montane ash forest and snow gum woodland) within the range of Leadbeater’s possum. During the 2009 bushfires, 34% of this area was burnt and is currently not suitable for Leadbeater’s possum. In addition, approximately 5500 ha of ash forests have been harvested since 2009 and is also currently unsuitable. The remaining ca. 130,000 ha of ‘available forest’ represents one assessment of the total area of current potential habitat. However, the actual area currently occupied by colonies of Leadbeater’s possum is likely to be considerably less than this due to the specialised habitat requirements of this species and because the suitability of potential habitat will vary over time.
Figure 2. Occupancy model predicting areas most likely to be currently occupied based on systematic stratified sampling in 2012. Figure 2. reproduced with permission from ‘A new strategic approach to biodiversity management – research component’ (by L Lumsden, J Nelson, C Todd, M Scroggie, E McNabb, T Raadic, S Smith, S Acevedo, G Cheers, M Jemison and M Nicol (2013) Arthur Rylah Institute for Environmental Research, Heidelberg).

Lumsden et al. (2013) developed an occupancy model for Leadbeater’s possum based on systematic stratified sampling in 2012 of 180 sites across the Central Highlands, with detection using call playback and thermal imaging cameras. This modelling factored in the impact of the 2009 bushfires and predicted where the species was most likely to occur at the time. It incorporated topographic, climate, fire history and other environmental data, but was unable to include consideration of some of the key habitat requirements (such as hollow-bearing trees and wattle density) as no suitable spatial layers of these features were available. The occupancy model (Fig. 2) suggests that the current ‘strongholds’ for the species are in the south of the Central Highlands, notably including the Baw Baw Plateau and its southern slopes, the Toorongo Plateau south of the Upper Yarra Catchment, state forest near Powelltown, parts of Toolangi State Forest and southern parts of the Upper Yarra National Park. Based on this model, the total area with at least a 50% probability of occupancy by Leadbeater’s possum was 35,764 ha; that with at least a 30% probability of occupancy was 93,825 ha.

Recent surveys are detecting Leadbeater’s possums across areas predicted by the occupancy model with a higher detection rate in areas predicted to have a greater than 30% probability of occupancy compared to those with less than 30% (Nelson et al. 2015). Preliminary testing of the model suggests that it does not show clear differentiation above 30% occupancy, and this will be tested further in the coming years (Nelson et al. 2015).
Based on habitat assessment and long term habitat monitoring, Lindenmayer and colleagues have assessed the extent of montane ash forest, and then the extent of that forest that contained ‘potentially suitable habitat’ for Leadbeater’s possum, with that suitability based on the density of hollow-bearing trees and the prevalence (basal area) of wattle understorey. As so defined, they reported that the extent of montane ash forest in the Central Highlands was 171,200 ha in 1987, of which only 6.7% (i.e. 11,470 ha) was predicted to support ‘potentially suitable habitat’ for Leadbeater’s possum (Lindenmayer 1989; Lindenmayer et al. 2015a). Subsequently, much of this habitat has been lost to bushfire, stag collapse and timber harvesting. Using comparable modelling to their assessment of the extent in 1987, they concluded that the area of ‘potentially suitable habitat’ for Leadbeater’s possum had decreased by 2015 to only 1.3% of the montane ash forest (i.e. 2225 ha) (Lindenmayer et al. 2015a; Lindenmayer et al. 2015b; Threatened Species Scientific Committee 2015).

Clearly, there is a difference of more than an order of magnitude between the current distribution predicted by the Lumsden et al. (2013) occupancy model, and that of ‘suitable habitat’ derived by Lindenmayer and colleagues. Some variation is to be expected based on different sets of assumptions, habitat mapping and other characteristics – for example, the Lindenmayer estimates do not include the area of suitable snow gum woodland habitat which the Lumsden et al. (2013) model includes. In addition, the Lindenmayer models may incorporate the likelihood of long-term persistence, rather than simply current occurrence, at a site.

The Threatened Species Scientific Committee (2015) considered that the current area of occupancy was within the range of 1000 to 50,000 ha. Based on IUCN guidelines (IUCN Standards and Petitions Subcommittee 2013) – tallying the number of 2 km x 2 km cells with recent records, and multiplying that tally by four – Woinarski et al. (2014) calculated area of occupancy as 28,400 ha, but this estimate included records prior to the 2009 fire, and did not include new records collected since 2012. Recalculating these figures factoring in all recent records and excluding records from the 2009 bushfire area that were recorded prior to the fire, the calculated area of occupancy at December 2015 was 46,400 ha (DELWP unpublished data).

Implications for conservation management:

- Given the current state and prognosis of Leadbeater’s possum, all sites at which the species has recently been recorded are important and merit protection; as do all sites at which there is a reasonable likelihood of its occurrence as indicated by occupancy and PVA modelling.

Priority research needs to enhance management:

- Precision in local and regional scale conservation planning will be enhanced with evidence from additional distributional surveys and analysis to further improve the refinement, resolution, complementarity and testing of occupancy and other distributional modelling, including finer-scale mapping of some key habitat attributes (such as large hollow-bearing trees and understory density).
3.2.3. Tenure and land use of the current distribution

The tenure and allocated land-use across the suitable habitat and distributional extent of Leadbeater’s possum has been assessed variably, with differences relating to interpretation of suitable habitat and the possum’s distribution, and ongoing iterations in the number and total extent of sites protected from timber harvesting.

Almost all of the known distribution of Leadbeater’s possum is on public land, managed as state forest or as conservation reserves. Some of the largest reserved areas in this range also serve as closed water catchments.

Of the just over 200,000 ha of ‘potential habitat’ (montane ash forest and snow gum woodland) within the range of Leadbeater’s possum, Leadbeater’s Possum Advisory Group (2014b) reported that 34% was in dedicated conservation reserves, 31% was available for timber harvesting and the rest in state forests with some prescribed protective measures through informal reserves (Special Protection Zones) or prescriptions (Table 1).

Table 1. Tenure of lands in ‘potential habitat’ of Leadbeater’s possum, as defined by Leadbeater’s Possum Advisory Group (2014b).

<table>
<thead>
<tr>
<th>Land use</th>
<th>Area (ha)</th>
<th>% of total area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated reserves (national parks and other permanent formal reserves)</td>
<td>69,200</td>
<td>34</td>
</tr>
<tr>
<td>Informal reserves (Special Protection Zones – reserves in state forests managed for environmental protection)</td>
<td>29,300</td>
<td>14</td>
</tr>
<tr>
<td>Values protected by prescriptions (state forest available for timber harvesting but excluded from harvesting due to biodiversity, regulatory and operational reasons)</td>
<td>43,300</td>
<td>21</td>
</tr>
<tr>
<td>State forest available for timber harvesting and projected to be harvested</td>
<td>62,600</td>
<td>31</td>
</tr>
</tbody>
</table>

The occupancy model likewise concluded that the majority of the predicted distribution is in state forest rather than in conservation reserves (Table 2) (Lumsden et al. 2013), in line with this representing the largest component of the area (i.e. 66% of the potential habitat). At >50% likelihood of occupancy, 22% of the 69,200 ha of national parks and conservation reserves in the Central Highlands are predicted to be currently occupied by Leadbeater’s possum, and 47% at the >30% level. Within state forest, 15% and 45% of the 135,200 ha is predicted to be occupied at the >50% and >30% level respectively: i.e. this model indicates that a higher proportion of potential habitat in national parks is occupied than in state forest.

Table 2. Tenure of lands in modelled distribution of Leadbeater’s possum, as defined by Lumsden et al. (2013).

<table>
<thead>
<tr>
<th>Land use</th>
<th>Area (ha) with >50% likelihood of occupancy (%)</th>
<th>Area (ha) with >30% likelihood of occupancy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated reserves (national parks and other permanent formal reserves)</td>
<td>15,243 (42.6%)</td>
<td>32,582 (34.9%)</td>
</tr>
<tr>
<td>State forest (all management zones)</td>
<td>20,521 (57.4%)</td>
<td>61,243 (65.1%)</td>
</tr>
<tr>
<td>Total</td>
<td>35,764</td>
<td>93,285</td>
</tr>
</tbody>
</table>
A specific ‘Leadbeater’s Possum reserve system’ was established in 2008, based on a tenure-blind assessment of ‘high quality’ habitat (predominantly old-growth ash forest) for Leadbeater’s possum. This reserve system mostly (58%) incorporated parts of existing National Parks and other reserves, but also included state forest sites with existing protection measures (Special Protection Zones) (27%), and then added a further ca. 3,000 ha of state forest lands that were not previously specially protected. The total area of the ‘Leadbeater’s Possum reserve system’ is 30,500 ha, comprising 127 habitat patches, all larger than 50 ha (Smith and Morey 2001).

In a recent population and extinction risk model, Lumsden et al. (2013) evaluated the historic and projected population trends for Leadbeater’s possum. The modelling was focused on the ‘Leadbeater’s Possum reserve system’, and more broadly throughout the Central Highlands. They concluded that

“… even without further disturbance such as future wildfires and an accelerated loss of hollow-bearing trees, the Leadbeater’s possum reserve system does not provide the requisite minimum population requirements. The population is highly sensitive to an accelerated loss of hollow-bearing trees and future wildfires. The analysis predicts that the population of Leadbeater’s possum within the reserve system has a high likelihood of being at a very low population size which imposes on the species a greater risk of extinction” (Lumsden et al. 2013) [p. 23].

Even when all parks and reserves within the species range were incorporated into the model, this area was insufficient to ensure the long-term persistence of the species under scenarios incorporating future fires, and additional dedicated reserves, informal reserves and values protected by prescription would be required to reduce the risk of extinction (Lumsden et al. 2013).

Implications for conservation management:

- The current reserve system alone is insufficient and inadequate to maintain Leadbeater’s possum, and the species’ recovery will require a substantial increase in the extent of dedicated and informal reserves, plus enhanced management in the remaining areas.

Priority research needs to enhance management:

- Updated population viability and distributional modelling should be undertaken to assess the extent of reserved area required to significantly reduce the risk of extinction of Leadbeater’s possum over the next 100 year period, and (using reserve design principles to maximise outcomes) to identify the most important areas required, or best options, for such reserve expansion.

3.2.4. Recent decline in distribution

Surveys have demonstrated that Leadbeater’s possums have failed to persist in almost all areas burnt in the 2009 bushfire (Lindenmayer et al. 2013c; Lumsden et al. 2013). That fire burnt extensive areas across much of the distribution of the species, including 34% of the extent of montane ash forest and sub-alpine (snow gum) woodland potential habitat and
45% of the Leadbeater’s possum reserve system (Leadbeater’s Possum Advisory Group (2014b).

But habitat loss is not only sudden and episodic – there is also ongoing more gradual decline (as indicated in Figure 1). Based on assessments of decline in the abundance of hollow-bearing trees and suitable habitat (Lindenmayer et al. 2015b), the Threatened Species Scientific Committee described an ongoing decline in the extent and quality of suitable habitat based on the collapse of large hollow-bearing trees, fire and timber harvesting, with such decline causing an estimated decrease of 81-83% in population size of Leadbeater’s possum, over the preceding and future 18 year (i.e. three possum generation) period (Threatened Species Scientific Committee 2015).

3.2.5. Future range

Regardless of habitat loss due to fire or other disturbance, bioclimatic modelling incorporating projected climate change predicts considerable ongoing diminution of the range of the Leadbeater’s possum (Lindenmayer et al. 1991d) and of its principal habitat, montane ash forest (Burns et al. 2015), and the likely increase in fire severity and frequency.

3.2.6. Survey techniques and effort

Conservation planning and management will be most effective when there is a high degree of confidence in known and prospective distribution. For much of its known history, Leadbeater’s possum has been an elusive species, largely undetectable using standard mammal survey techniques (such as trapping, spotlighting, hair tubes or predator scats). However, over recent decades, there has been substantial investigation of, and refinement in, targeted survey techniques, now allowing for far more rapid and comprehensive sampling, although all sampling procedures have some interpretational and other constraints.

The long-established sampling and monitoring method is ‘stag-watching’, which involves a set of observers positioned under large hollow-bearing trees on dusk to observe possums emerging from tree hollows (Seebeck et al. 1983; Smith et al. 1989). It is a generally reliable, but time- and labour-intensive method, and may be affected by observer experience, density of hollow-bearing trees and height at which animals are emerging (Lindenmayer 2009). However, it is the most appropriate method for determining the number of individuals on a site.

More recently, some surveys have successfully used call playbacks or imitations to lure the possums towards observers, with detection in dense vegetation further improved by the use of thermal cameras (Lumsden et al. 2013; Harley 2015b). There may be some caveats with interpretations of results from this method including uncertainty about the distance that responding possums may move to the playback and variability in response rates relating to wind or rain, and to habituation (Lindenmayer et al. 2014a), or seasonal or site-specific variation.

Recent studies – in montane ash forests, sub-alpine (snow gum) woodlands and lowland swamp forests – have demonstrated that fixed remote (motion-sensing) cameras, directed at bait stations, can be another cost-effective and efficient survey tool for determining occupancy at a site (Harley et al. 2014).
The establishment and regular checking of nest boxes has also progressed recently as a survey and monitoring tool, with particular applicability in sub-alpine woodland and lowland swamp forest habitats (Harley 2006; Harley et al. 2014), and with varying success in montane ash forests (Lindenmayer et al. 2009; Harley 2016).

There have been substantial recent targeted surveys for Leadbeater’s possum, as part of implementing the Leadbeater’s Possum Advisory Group recommendations, to facilitate establishing timber harvesting exclusion zones around known colonies. This effort includes targeted surveys by DELWP (Nelson et al. 2015), and additional records from other organisations and the community. As a result of this combined intensive and extensive survey effort, the number of sites with confirmed records for this species is increasing. This increased number of records is useful for protection of known colonies, and for refinement of predictive distributional modelling and for population estimation. This increasing number of records reflects the increased and more effective sampling effort but it is unclear if they indicate that the species is more widespread and numerous, and hence more secure, than previously recognised. In addition, the long term viability of colonies of possums reported at many of these newly recorded sites is unknown.

DELWP’s targeted surveys were initially planned to occur over a 5 year period but have been accelerated to complete this work within 3 years, with the survey program due for completion by mid-2017. In addition, pre-harvest surveys will be undertaken by VicForests, which commenced in late 2015, using a risk based approach to sample proposed coupes with the greatest likelihood of the species being present.

The Victorian Government has recently developed ‘The Leadbeater’s Possum Interactive Map’ (http://lbp.cerdi.edu.au/possum_map.php) – a resource that provides public access to up-to-date information, including confirmed colonies and the resulting timber harvesting exclusion zones; areas where there is a modelled probability of occupancy by Leadbeater’s possum; and sites where DELWP has undertaken targeted surveys. Survey standards have also been developed which outline the various survey techniques and provide guidance on the evidence required to confirm presence of the species at a location and the amount of survey effort required to infer absence (Department of Environment Land Water and Planning 2015b).

3.3. Population size

3.3.1. Estimates of current population size

There is no precise and robust estimate of the total population size for Leadbeater’s possum. An exception is for the very small and disjunct subpopulation at Yellingbo, where censuses of all individuals have been undertaken over recent years – its population in 2015 was fewer than 50 individuals (Harley 2015a).

The Threatened Species Scientific Committee (2015) collated relevant recent assessments of population size, noting that all estimates were based on a set of (sometimes different) assumptions relating to distributional extent, area of suitable habitat, density and social group size. These estimates are summarised in Table 3. The inconsistency in these population estimates (and the wide confidence limits, where available) is unsurprising given that projection of estimates is based on sampling within only a small proportion of the potential range, because different estimates use different areas of suitable habitat, because of increasing knowledge and because there may be substantial variation in size of colonies.
Given the inconsistency in their assumptions and knowledge base, variation among these estimates should not be used to infer trends or rates of population decline (or increase).

Table 3. Estimates of population size for Leadbeater’s possum.

<table>
<thead>
<tr>
<th>Source</th>
<th>Estimated total population</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith et al. (1985)</td>
<td>7500 + 2300</td>
<td>Estimate prior to 2009 bushfires; does not include then- undiscovered snow gum woodland or lowland swamp forest subpopulations</td>
</tr>
<tr>
<td>Lindenmayer (1996a)</td>
<td>4000</td>
<td>Estimate prior to 2009 bushfires; does not include then- undiscovered snow gum woodland or lowland swamp forest subpopulations</td>
</tr>
<tr>
<td>Menkhorst (2008)</td>
<td>2200</td>
<td>Estimate prior to 2009 bushfires; this estimate includes an estimated 200 individuals in the lowland swamp forest subpopulation</td>
</tr>
<tr>
<td>Woinarski et al. (2014)</td>
<td>(1100)</td>
<td>Estimate subsequent to 2009 bushfires; estimate for mature individuals only; includes snow gum woodland and lowland swamp forest subpopulations</td>
</tr>
<tr>
<td>Leadbeater’s Possum Advisory Group (2014a, 2014b)</td>
<td>3945-10,960</td>
<td>Estimate subsequent to 2009 bushfires; includes snow gum woodland subpopulations</td>
</tr>
<tr>
<td>Lindenmayer et al. pers. comm. to Threatened Species Scientific Committee (2015)</td>
<td>3125</td>
<td>Estimate subsequent to 2009 bushfires; interpreted here to be for montane ash forest only</td>
</tr>
</tbody>
</table>

Note that all but one of the estimates given in Table 3 relate to total number of individuals. However, the most relevant parameter used in conservation status assessments is the number of mature breeding adults (IUCN Standards and Petitions Subcommittee 2013). This number will be less than the total population size because of the colonial social system of Leadbeater’s possum (where only one reproductively active male and female are present in colonies, regardless of the number of individuals in the colony), and because the total population size includes immature individuals.

It is useful to attempt to derive an accurate estimate of population size, in order to better resolve population viability modelling and assessment of conservation status but, to a large extent, the actual population size is a less important conservation management parameter than the population trend, in particular the current and projected rate of population decline.

Priority research needs to enhance management:

Further investigations should be undertaken to provide a robust and reliable estimate of current total population size.

3.3.2. Rates of current and projected population decline

Population trends are largely influenced by changes in the extent, quality and connectivity of suitable habitat, and such changes are considered in more detail in the **Habitat** section below.
Population trends have been described based on population monitoring at some sites, and – more broadly – on population projections based on models of the variation over time in the extent of suitable habitat.

Over the decade up to 2015, regular monitoring of the population at Yellingbo has demonstrated a monotonic decline, with total decline over this period of 62% (Harley 2015a). Given this trend, and its small size, this subpopulation is now at extremely high risk of local extinction.

Population counts were made at several sub-alpine woodland sites prior to the 2009 bushfires, and repeated after those fires. For the Lake Mountain area, an estimated population of 200-300 individuals, based on survey results prior to the fire, was reduced to just six individuals following the bushfire (Harley 2016).

There has been some reporting of changes in the abundance or incidence of Leadbeater's possum from the ongoing and substantial monitoring program established in 1983 for the montane ash forests, but no published overall assessment over the course of that monitoring program to date. Previous analyses of the data indicated an apparent decline of Leadbeater’s possum at monitoring sites over the period 1987 to 2001 (Lindenmayer et al. 2003), but no significant trend in abundance over the period 1997 to 2007 (Lindenmayer et al. 2011b; Lindenmayer et al. 2014b). The apparent stability over the latter period may be due to this coinciding with a period of relatively low loss of hollow-bearing trees (14% during this time) (Lindenmayer et al. 2011b). Subsequently, there was a marked loss of possums at sites burnt by the 2009 bushfires (Lindenmayer et al. 2013c).

Past and future population trends in the Leadbeater’s possum reserve system and more broadly across the Central Highlands region have been modelled based on the disturbance-mediated changing extent in the area of suitable habitat (Lumsden et al. 2013; Leadbeater’s Possum Advisory Group 2014b). These models (e.g. Figure 1 which relate specifically to the reserve system but are probably largely generalisable throughout the distribution) describe the historic population collapse due to the loss of habitat in the extensive 1939 bushfire; the population recovery in the next few decades as mid-storey and eucalypt cover recovered rapidly following fire and the burnt area retained abundant stags (large hollow-bearing trees killed by the fire but remaining standing); then ongoing and continuing decline as stags collapsed and some suitable habitat was logged; further catastrophic population collapse in the area burnt by the 2009 bushfire; and a future of ongoing population decline for at least another 50-60 years due mostly to declining hollow availability and wattle senescence; with possible population increase thereafter as hollow availability (and suitable habitat) again increases. Broadly, this population model is comparable to previous models that predicted marked ongoing population decline, a severe population ‘bottle-neck’ due to declining extent of suitable habitat, and hence increasing likelihood of extinction for Leadbeater’s possum (Lindenmayer et al. 1993a; Possingham et al. 1993; Lindenmayer and Lacy 1995a; Lindenmayer and Possingham 1995a; McCarthy and Lindenmayer 2000; Lindenmayer and McCarthy 2006).

Note that modelled scenarios (such as Figure 1b) that (realistically) include some future disturbance events result in projections of far smaller population size, and hence substantial increase in the likelihood of extinction, than scenarios without such disturbance (Figure 1a) (Lumsden et al. 2013). In addition, the existing models do not consider a range of factors that magnify impacts on declining populations with reducing habitat availability, such as the impacts of increased habitat fragmentation, reduction in genetic heterogeneity because of
reduced gene flow and smaller population size, potential increased inter-specific competition for the regionally diminishing number of hollows, and climate change.

Results from all available population (and habitat) monitoring and modelling were interpreted by Threatened Species Scientific Committee (2015) to infer a population decline of more than 80% over the preceding three possum generations (18 years) and to project a further decline in the population size of more than 80% over the next three generations.

3.3.3. Subpopulation structure and genetic variation

Leadbeater’s possum comprises two distinct genetic groups, with marked and long-standing distinction in genetic composition between the small lowland subpopulation and all other (montane ash forest and sub-alpine (snow gum) woodland) subpopulations (Hansen et al. 2005; Hansen and Taylor 2008). The former is considered an ‘evolutionarily significant unit’ (ESU) as it is the last surviving remnant (relict) of an otherwise extinct genetic unit, that has historically been, and remains, isolated from others (Hansen and Taylor 2008). It is now inbred (Hansen et al. 2009), and will require careful management to retain even its limited levels of genetic heterogeneity.

Subpopulation structuring is not well resolved in the Central Highlands due to the small number of animals that have been genetically sampled. In this area, it is ‘remarkably genetically diverse’, with evidence of ongoing gene flow (indicating effective dispersal) across much of this range, although with some contrary evidence of recent disruption of gene flow for some sites (e.g. Powelltown), probably due to historic and ongoing habitat fragmentation (Hansen et al. 2009). Sub-structuring has also been reported within the Yellingbo subpopulation, indicating that this can occur over small spatial scales and that the species may be highly sensitive to habitat fragmentation (Hansen et al. 2009).

Small and isolated subpopulations may be particularly at risk from genetic, stochastic and other factors: for example, even a relatively small bushfire may destroy all habitat in the Yellingbo area (Harley 2015a). Population viability analysis has indicated that discrete subpopulations need to be larger than a threshold of 200 individuals to have at least a 90% chance of persistence over a 100 year period (Lindenmayer and Lacy 1995b; Lindenmayer 2000). It is likely that the distribution of Leadbeater’s possum is being increasingly fragmented, with increasingly isolated subpopulations unlikely to maintain such a population viability threshold. For example, the subpopulation at Toolangi is surrounded by areas burnt in the 2009 bushfires and is now likely to be isolated from other subpopulations.
3.3.4. Population monitoring

There are notable current population monitoring programs for Leadbeater’s possum in montane ash forest environments, sub-alpine (snow gum) woodlands and lowland swamp forests. The most long-standing of these programs is that undertaken by Lindenmayer and colleagues, based on repeated stag-watching at ca. 160 sites in montane ash forests (Smith et al. 1989; Lindenmayer et al. 1993b, 1994b; Welsh et al. 1996; Lindenmayer et al. 1997; Lindenmayer et al. 2003; Cunningham and Lindenmayer 2005; Lindenmayer et al. 2013c). This monitoring also includes assessments in trends in habitat quality (particularly the abundance of hollow-bearing trees), and of other arboreal possum species. It includes forest sites across a wide range of forest age classes, and includes before-and-after monitoring of sites burnt in the 2009 bushfires. Some progress results have been reported for trends in the abundance of Leadbeater’s possum (see section 3.3.2), but more substantial data have been reported to date on marked declining trends in the abundance of hollow-bearing trees, a critical habitat component for Leadbeater’s possum (Lindenmayer and Wood 2010; Lindenmayer et al. 2012; Lindenmayer et al. 2014b).

The much smaller lowland swamp forest subpopulation has been more intensively monitored, mostly with the use of nest boxes and total counts of all individuals, over two decades, with these results also showing a very marked population decline (Harley 2012; Harley 2016).

Population monitoring has also been underway in sub-alpine (snow gum) woodland at Lake Mountain since 2003 and Mt Bullfight since 2010 to monitor local distribution and abundance, post-fire persistence and recolonisation (Harley 2016).

Implications for conservation management:

• As is currently practised (but subject to further risk assessment), the two genetically distinct groups of Leadbeater’s possum should be managed separately, with specific objectives and urgent action to retain the lowlands swamp forest ESU. However, given the parlous status of the lowland ESU, there may come a need to enhance its genetic stock.

• Management should seek to actively retain or enhance adequate habitat connectivity within the montane forest habitat through linking reserves and wildlife corridors and artificial connectivity over roads, or if necessary to augment such connectivity through careful translocation.

Priority research needs to enhance management:

• Assess the risks, costs and benefits, and likelihood of success of options for genetic rescue of the Yellingbo ESU, including gene pool mixing between the lowland swamp forest and other subpopulations.
3.4. Habitat

3.4.1. Key habitat features

Broadly, the key habitat features required by Leadbeater’s possum are (i) suitable (large) hollows for denning and breeding, at a density that allows for multiple den sites within any single colony home range; (ii) vegetation structure in the form of a sub-canopy or mid-storey layer of more or less continuous or interconnecting foliage cover (to facilitate the possum’s foraging and other movement) (Lindenmayer 1996b); and (iii) a floristic composition that includes dominance of smooth-barked eucalypts (especially of species with some loose or decorticating bark that provides shelter for invertebrate prey) (Lindenmayer 1996b; Harley 2004a; Harley 2004c, 2004b), often with an understorey of gum-producing Acacia species (Smith et al. 1985; Smith and Lindenmayer 1988; Lindenmayer et al. 1991b). Additionally, Leadbeater’s possums construct a large nest (inside hollows) made mostly out of shredded fibrous bark of some eucalypt and other trees, and the occurrence of trees with such fibrous bark in the home range is also required (Smith and Lindenmayer 1988; Harley 2004b).

Given the long period required to form suitable and sufficiently abundant hollows, the first of these three critical habitat features is closely associated with tree age and size. Hollows used typically have large internal dimensions (ca. 30 cm diameter) (Smith and Lindenmayer 1988). These occur almost exclusively in large old trees (Lindenmayer et al. 2013b; Lindenmayer et al. 2013c), with Leadbeater’s possum typically selecting hollow-bearing trees that are 190-450 years old (Smith and Lindenmayer 1988; Lindenmayer et al. 2015a).

In contrast, the dense understorey preferred by Leadbeater’s possum often occurs in young regenerating forests and optimal habitat occurs in multi-aged forest where the large trees, dead or live, provide hollows and regenerating vegetation provides food and movement pathways (Lindenmayer et al. 1990b).

Habitat suitability and occupancy is also influenced by broader spatial landscape context, around individual nest trees (Lindenmayer et al. 1990a) and around a forest site. Minimum habitat size is about 12 ha (Threatened Species Scientific Committee 2015), but the likelihood of persistence of Leadbeater’s possum in any habitat patch increases substantially with increasing patch area (McCarthy and Lindenmayer 2000; Lindenmayer and McCarthy 2006). At least in montane habitat, there is little use of narrow habitat strips through recently harvested areas (Lindenmayer et al. 1993b). A recent (2012) sampling of 37 isolated unburnt mountain ash forest patches (potential refuges, surrounded by recently burnt areas) found Leadbeater’s possums in six of these sites (16%), with the smallest occupied patch being 10 ha (Lumsden et al. 2013), and small numbers of individuals have persisted in unburnt linear refuges of sub-alpine woodland at Lake Mountain and Mt Bullfight (D. Harley and J. Antrobus pers. comm.). Given that these patches have been isolated only since the 2009 fires, it is not known whether colonies will persist and maintain normal demographic processes in these areas, or be able to use them ultimately to recolonise adjacent areas that

Implications for conservation management:

- Population monitoring has provided a vital contribution to, and measurement of the effectiveness of, management, and existing programs should be retained and expanded including all relevant habitat types and forest ages.
are currently unsuitable. Furthermore, sampling following the 2009 bushfires found that Leadbeater’s possum were significantly less abundant in unburnt sites where fire had approached within 500-1000 m (in comparison to unburnt areas without such proximity to recently burnt areas), suggesting that the detrimental impacts of fire are higher than simply the proportion of the landscape that has been burnt (Lindenmayer et al. 2013c).

Most of the core habitat factor requirements are consistent across the three broad habitat types in which the species occurs: montane ash forest (comprising about 96% of suitable habitat), sub-alpine (snow gum) woodland (about 4%) and lowland swamp forest (less than 1%) (Department of Environment and Primary Industries 2014a). However, there are additional specific factors characteristic of each of these habitat types, as described below.

Implications for conservation management:
- The extent, quality and connectivity of suitable habitat is the critical factor for conservation of Leadbeater’s possum, and conservation management actions should focus primarily on factors and actions that serve to increase (or most effectively reduce the rate of decline in) the current and prospective habitat extent, quality and connectivity.

3.4.2. Montane ash forest habitat

The vast majority of the Leadbeater’s possum population occurs in montane ash forest, dominated by mountain ash *Eucalyptus regnans*, alpine ash *E. delegatensis* and/or shining gum *E. nitens*, at altitudes from 400 to 1,200 m above sea level (Lindenmayer 1989; Lindenmayer et al. 1989). In montane ash forest, Leadbeater’s possum occurs at highest densities in multi-aged forest containing several age classes of eucalypts, including live and dead hollow-bearing trees, together with a dense understorey of wattles (notably *Acacia dealbata*, *A. obliquinervia*, *A. melanoxylon* and/or *A. frigescens*) (Lindenmayer et al. 1990a; Lindenmayer et al. 1991b; Smith and Lindenmayer 1992; Lindenmayer et al. 1994b). They also regularly occur in patches of rainforest or montane riparian thickets along gullies embedded within montane ash forests (D. Harley pers. comm.; DELWP unpublished data).

In these tall forests, the occurrence and density of Leadbeater’s possum is associated with hollow availability. Regression models have shown that there is a significant correlation between the incidence and abundance of Leadbeater’s possum and the density of hollow-bearing trees on a site (Lindenmayer et al. 1991b; Lindenmayer et al. 1994b), although this relationship is less pronounced in reporting of results from recent years (Lindenmayer et al. 2011b; Lindenmayer et al. 2014b). The absence or low abundance of resident Leadbeater’s possums on sites with few potential nest trees is thought to be due mostly to competition for hollows from other species and a requirement by individual colonies of Leadbeater’s possum to use more than one den tree (Smith and Lindenmayer 1988; Lindenmayer and Meggs 1996). However, the species may show some flexibility in its selection of nesting sites where there are low numbers of hollow-bearing trees (Lindenmayer et al. 2011b).
In the montane ash forests, the abundance of suitable nest trees is tightly correlated with disturbance history (Lindenmayer et al. 1990b; Lindenmayer et al. 1990c; Lindenmayer et al. 1991a; Smith and Lindenmayer 1992). For the dominant mountain ash trees, hollow formation does not start until the trees are about 120 years old, and the hollows with large internal cavities that are preferred by Leadbeater’s possum typically do not form until the trees reach 190-220 years old (Smith and Lindenmayer 1988; Lindenmayer et al. 1991c).

Peak densities of Leadbeater’s possum occur in regrowth forests (15-50 years after bushfire), in which stags supply abundant tree hollows, and there is a high biomass of wattles (20–50% of stand basal area) (Smith and Lindenmayer 1988; Lindenmayer et al. 1990a; Lindenmayer et al. 1991b; Lindenmayer et al. 2000).

Dense regrowth forming at least 15 years after timber harvesting can also provide foraging habitat if there are nesting sites within the regrowth or in adjacent areas (Smith et al. 1985; Nelson et al. 2015).

In the post-fire (bushfire or regeneration burns after harvesting) successional cycle, the biomass of wattles increases, peaks and then declines as they senesce and die (typically 60-100 years after disturbance), and stags gradually collapse (Lindenmayer et al. 2012). Habitat may then be of diminishing suitability to provide for all Leadbeater’s possum habitat requirements, until the regrowth cohort of eucalypts becomes old enough to form suitable hollows for Leadbeater’s possum (i.e. >190 years).

Bushfire is a key driver of habitat suitability in montane ash forests (and in other habitats used by Leadbeater’s possum). In montane ash forest, eucalypt trees may live for several hundred years and increase their hollow availability over this lifespan, however this forest dynamic may be markedly changed by frequent, high intensity and extensive fires. Recent estimates indicate that the extent of mountain ash forest that is ‘old-growth’ has declined from an estimated minimum of 30% (47,000 ha) at the time of European settlement to ca. 1% (1700 ha) now, with the current extent mostly in very small fragments (Lindenmayer et al. 2014a; Burns et al. 2015; Lindenmayer et al. 2015a). The extent of old-growth in alpine ash forests is even less (0.37% of its extent) (Lindenmayer et al. 2014a).

The likelihood that Leadbeater’s possums are retained in a context of more frequent bushfire will be dependent upon the age of the forest when burnt, with burnt older forests (i.e. old enough to have trees with hollows) providing better habitat than burnt younger forest. The future relative availability of habitat suitable for Leadbeater’s possum will also depend upon the extent to which (inevitable) bushfires leave some unburnt patches (which will be contingent in part on fire severity), the capability and intent of fire management strategies and actions, deliberate management to retain as much mixed-age forest as possible, and the extent of natural or assisted dispersal of Leadbeater’s possum across the landscape.

Fire impacts may be exacerbated where salvage logging (the harvesting of fire-impacted trees following bushfire) is practised, as this results in further losses of the critical resource of large hollows (Lindenmayer and Ough 2006; Likens and Lindenmayer 2012; Lindenmayer et al. 2012; Lindenmayer and Laurance 2012; Lindenmayer et al. 2015a; Lindenmayer et al. 2015b).

Furthermore, timber harvesting may affect subsequent fire intensity – younger (post-harvesting) regrowth ash may fuel higher intensity and hence more destructive crown fires, thereby compounding the regional-level and long-term decline in hollow availability. The evidence for this relationship relies largely on assessments of the behaviour of the 2009
bushfire, and the interpretation of this evidence is contested (Lindenmayer et al. 2013c; Attiwill et al. 2014; Bradstock and Price 2014; Taylor et al. 2014).

Habitat suitability and successional pathways differ following bushfire and timber harvesting, most notably with the former typically leaving large dead trees that may contain hollows, and subsequently a more diverse range of tree ages and sizes. In contrast, timber harvesting using clear-felling typically leaves a simpler regenerating forest structure with fewer available hollows (Lindenmayer et al. 1990c; Lindenmayer and McCarthy 2002). Typically, such timber harvesting renders the habitat unsuitable for nesting by Leadbeater’s possum for at least 150 years (Lindenmayer 2009; Lindenmayer and Possingham 2013), although regenerating forests may provide foraging habitat within 15-30 years if suitable nesting sites are available (on site or nearby). Furthermore, the overall site- and regional-level reduction in hollow availability due to timber harvesting is exacerbated by rotation times that are shorter than the time taken for large hollows to form in regrowth trees (Ball et al. 1999; Lindenmayer et al. 2015b).

Some harvesting practices are likely to result in detrimental impacts on adjacent unharvested habitat (e.g. retained strips surrounded by recently harvested areas are unlikely to be used by Leadbeater’s possum), such that the total area affected is larger than the actual area harvested (Lindenmayer and Laurance 2012; Lindenmayer et al. 2015a; Lindenmayer et al. 2015b).

The detrimental impacts of timber harvesting on current and prospective habitat suitability for Leadbeater’s possum can be reduced to some extent through changes in harvesting practices, notably replacement of clear-felling with ‘aggregated retention’ or ‘variable retention’ harvesting (that maintains some mixed age structure in logging coupes: Baker and Read (2011); Neyland et al. (2012)), and the use of cooler post-harvesting fires and less reliance on artificial seeding (Lindenmayer and Franklin 1997; Lindenmayer et al. 2013b). These harvesting approaches are currently being undertaken in approximately 50% of the area of ash harvested, through implementation of the Leadbeater’s Possum Advisory Group recommendations (Leadbeater’s Possum Advisory Group 2014a).

Habitat suitability at any site is typically related to the co-occurrence at that site of sufficient hollows (for nesting) and adequate understorey cover (for movements and feeding), but some recent results suggest that these attributes do not necessarily have to co-occur at the site itself – Leadbeater’s possums can occur in an area in which there is a close juxtaposition of habitat that provides nesting hollows but not suitable foraging habitat with habitat that provides suitable foraging habitat but few nesting hollows (Lumsden et al. 2013). However, further research is required to understand the extent to which Leadbeater’s possum can use such spatial variation, and the implications of using separate foraging and nesting area.

Habitat suitability is also related to some topographic and climate features, with highest incidence of Leadbeater’s possum in forests on east and south facing slopes (Lindenmayer et al. 1990a; Lindenmayer et al. 1993c). In a separate habitat modelling study, those montane ash forests considered most likely to be currently occupied by Leadbeater’s possums were characterised by lush, unburnt vegetation in gullies, located in areas that have relatively low summer temperatures and high summer rainfall (Lumsden et al. 2013).
3.4.3. Decline in habitat extent, suitability and connectivity: montane ash forest

The extent, quality and connectivity of Leadbeater’s possum habitat in montane ash forest is undergoing severe ongoing decline. This is a consequence of changing fire regimes, habitat loss due to timber harvesting, and ongoing habitat fragmentation. The extensive 1939 bushfire burnt about 85% of mountain ash forests in the Central Highlands (Burns et al. 2015), but left a landscape legacy of standing dead large hollow-bearing trees that formed suitable denning sites for Leadbeater’s possum. However, the abundance of these large hollow-bearing trees has declined substantially, partly due to extensive salvage logging, subsequent bushfires and the natural decay and collapse of the remaining stags and other large old trees (Lindenmayer and Ough 2006).

Figure 3. Observed and projected changes in the average density of large hollow-bearing trees in mountain ash forests in the Central Highlands, from Lindenmayer et al. (2013b). Figure 3 reproduced with permission from David Lindenmayer.

The persistence of large hollow-bearing trees has been monitored at numerous sites, with this monitoring showing a rapid decline in their abundance across the set of monitored sites (Lindenmayer 1996b; Lindenmayer et al. 1997; Lindenmayer 2009; Lindenmayer and Wood 2010; Lindenmayer et al. 2011b; Lindenmayer et al. 2012; Lindenmayer et al. 2015a), with annual rates of collapse of 4.4% of large-hollow bearing trees reported for the period 1983 to 1993 (Lindenmayer et al. 1997), and 1.8% for the period 1997 to 2006 (Lindenmayer et al. 2011b). Modelling of the rate of decay predicted that most stags (those large trees killed in the 1939 bushfire) will have disappeared within 50 years, leaving a severe future shortage of trees containing suitable hollows for wildlife, with this bottleneck lasting until at least 2075. The observed and projected rate of decline in the density of large hollow-bearing trees in the Central Highlands is illustrated in Figure 3 (Lindenmayer et al. 2013b), however recent assessments have revealed a more rapid decline than previously predicted, with 50% of stags collapsing between 1997 and 2015 (D. Lindenmayer pers. comm.). The projected low density of large old trees may signify detriment more broadly than to Leadbeater’s possum.
alone: a density of less than one hollow-bearing tree per hectare has been suggested to represent ecosystem collapse for the mountain ash forest ecosystem (Burns et al. 2015).

The 2009 bushfires have not had comparable effects to those of the 1939 fires, because much of the montane ash forest that was burnt in 2009 was regrowth from the 1939 bushfires or younger forest (and hence contained few live hollow-bearing trees), and furthermore the 2009 bushfires substantially increased rates of loss of stags remaining after the 1939 fires (Lindenmayer et al. 2012; Lindenmayer et al. 2015a).

Survival of Leadbeater's possum during the projected bottleneck in hollow-bearing trees will depend on protection of refuge habitats, particularly patches of multi-age and old-growth forest, and individual mature and senescent trees, as well as the success of new methods of creation of hollows, translocations or other management actions. Recovery after the bottleneck is expected to depend on the extent of successful fire management and on changes in silvicultural practices (Smith and Lindenmayer 1992).

The marked historic decline in habitat suitability for Leadbeater's possum is also well illustrated in trends in the extent of old-growth forest, and the changing composition of montane ash forest ages. Recent assessments demonstrate that by far the highest proportion of montane ash forest age class now comprises relatively young regrowth (particularly from the 2009 bushfires, but also following timber harvesting in recent decades), whereas very little of the forest is dominated by stands of trees old enough to form hollows suitable for Leadbeater’s possum (i.e. trees dating from prior to 1900) (Fig. 4) (Lindenmayer et al. 2015b). However, note that some of the forests dominated by younger stands do contain remnant living old trees or dead stags that contain hollows.

Figure 4. The age class of dominant trees in stands of montane ash forests in the Central Highlands. Decade indicates the date at which the trees germinated. Figure 4 reproduced with permission from ‘Mountain Ash: Fire, Logging and the Future of Victoria’s Giant Forests” (by David Lindenmayer, David Blair, Lachlan McBurney and Sam Banks (2015b) and CSIRO Publishing. http://www.publish.csiro.au/pid/7461.htm
3.4.4. Sub-alpine (snow gum) woodlands

Leadbeater’s possum is now known from several areas (including the Baw Baw Plateau, Mt Bullfight and Lake Mountain) of sub-alpine woodlands dominated by snow gum *Eucalyptus pauciflora*, particularly where there is a dense mid-storey of mountain tea tree *Leptospermum grandifolium* (‘montane riparian thickets’) along drainage lines (Jelinek *et al.* 1995; Department of Environment and Primary Industries 2014a; Harley 2016) at altitudes of ca. 1400 m. Within the Central Highlands region, such habitat is relatively restricted, with a total area of ca. 8000 ha, most of which occurs on the Baw Baw plateau (Department of Environment and Primary Industries 2014a).

3.4.5. Decline in habitat extent, suitability and connectivity: sub-alpine snow gum woodlands

The 2009 bushfires markedly affected the extent and quality of sub-alpine woodland habitat at Lake Mountain and Mt Bullfight, and caused the loss of many known colonies. At Lake Mountain, more than 95% of the population known to be present prior to the 2009 bushfires was killed by fire or failed to persist after it (Harley 2016). Post-fire vegetation dynamics are less well known in sub-alpine woodlands than in montane ash forests, but it is likely that it will take several decades for a mid-storey layer of mountain tea tree to regenerate in burnt areas.

Not all areas of snow gum woodland inhabited by Leadbeater’s possum were burnt in the 2009 bushfires, with the Baw Baw plateau area notably retaining its suitable habitat and Leadbeater’s possum populations.

Implications for conservation management:

- Management to reduce the likelihood of extensive and severe bushfire will be critical for the long-term persistence of Leadbeater’s possum in montane ash forests.
- The 1939 regrowth is, in most areas, the oldest cohort of forest, and hence this age class will be essential for the future restoration of the old growth ash forest estate in the Central Highlands.
- Hollow-bearing trees are scarce and declining in the Central Highlands and will not be naturally replaced for decades. These are therefore a critical resource that requires full protection.
- Although a range of prescriptions are in place to reduce impacts, and new processes (e.g. regrowth retention harvesting) have been introduced, timber harvesting reduces the extent, quality and connectivity of suitable habitat for Leadbeater’s possum, and hence increases its risk of extinction. Timber harvesting practices need to continue to adapt to minimise impacts on Leadbeater’s possum.

Priority research needs to enhance management:

- Hollow-bearing trees should be mapped across the montane ash forest habitat, using remote sensing techniques (LiDAR and air photograph interpretation) in conjunction with ground truthing. Concurrent mapping of understorey density would provide more complete spatial information to improve distribution models.
3.4.6. Lowland swamp forest

At Yellingbo the isolated Leadbeater’s possum subpopulation occurs in lowland (110 m elevation) habitat that contrasts markedly with the habitat in its main range. In this area, it occurs in riparian and seasonally inundated floodplain environments with forest dominated by mountain swamp gum *Eucalyptus camphora* (with canopy height of 15-25 m) with dense thickets of *Melaleuca* (*M. ericifolia* and *M. squarrosa*) and *Leptospermum* (*L. lanigerum*, *L.*, *scoparium* and *L. continentale*) species (Smales 1994; Harley 2002; Harley 2005; Harley *et al.* 2005; Smith and Harley 2008). The major block of lowland swamp forest at Yellingbo covers an area of ca. 181 ha. However due to habitat degradation less than 20 ha of this currently provides suitable habitat for Leadbeater’s possum (Department of Environment and Primary Industries 2014a). In some parts of this small area, suitable and occupied habitat now occurs only in very narrow (<120 m) corridors (Harley *et al.* 2005). Suitable tree hollows may be limiting in this habitat (Harley 2005; Harley *et al.* 2005) but have been compensated for through targeted provisioning of nest boxes (Harley 2004b).

Although there is notable imprecision about the location of the first records of Leadbeater’s possum, and most of the habitat around those records is now long cleared, it is likely that the earliest historical records of Leadbeater’s possum from the Bass River and Koo-Wee-Rup swamp were also from broadly similar and formerly widespread lowland swamp gum woodlands (dominated by *E. camphora* and/or *E. ovata*) and dense thickets of *Melaleuca* and *Leptospermum* (Harley *et al.* 2005).

3.4.7. Decline in habitat extent, suitability and connectivity: lowland swamp forest

Most of the swamp gum forests in the south-western Gippsland to Healesville region have been cleared, with only very small isolates remaining (McMahon and Franklin 1993; Harley *et al.* 2005).

At Yellingbo, suitable habitat is highly restricted and of declining quality (Turner 2003). About half of the Leadbeater’s possum territories are considered to have declining habitat quality and have recently been abandoned by the possums (Harley 2015a). This decline in habitat suitability is due to eucalypt dieback arising from altered hydrology, habitat succession towards an older age-class that is more open in structure, and a lack of eucalypt regeneration (Harley 2015a).

A revegetation project to attempt to halt and reverse this decline in habitat quality and extent has been underway for about a decade (Harley 2015a), with potential to more than double the (currently very limited) area of suitable habitat (Harley *et al.* 2005).

A key risk-spreading strategy to contend with the risk of fire affecting the entire lowland population is to identify suitable lowland release localities beyond Yellingbo where populations could be established through the translocation of captive-bred young (Harley 2016).

Implications for conservation management:

- Management to reduce the likelihood of extensive and severe bushfire will be critical for the long-term persistence of Leadbeater’s possum in sub-alpine woodlands.
3.4.8. Habitat augmentation

In response to the historic, current and projected decline in the extent and quality of habitat across Leadbeater’s possum’s range, there has been some applied research aimed at augmenting habitat quality.

Nest box provision can provide benefits at localised scale at sites with suitable foraging habitat and vegetation structure but a lack of natural hollows and may be able to increase the likelihood of colonies persisting at such sites. Nest boxes may also be useful during translocations, and at some post-disturbance successional stages.

There have been variable responses of Leadbeater’s possum to the provision of nest boxes. The species has made extensive use of nest boxes in lowland swamp forest at Yellingbo, with more than 75% of the total possum population there making regular use of nest boxes for denning (Harley and Spring 2003; Harley 2004b, 2006). High occupancy rates for nest boxes have also occurred in sub-alpine (snow gum) woodland, where Leadbeater’s possums have constructed nests in 72 of 119 nest boxes (60%) installed in unburnt habitat (Harley 2016).

In contrast, historically there has been less uptake of nest boxes in montane ash forests, and it has been argued that nest boxes are unlikely to provide a significant boost to habitat quality due to the limited longevity of nest-boxes (Morton et al. 2009), and the impracticality of their application over large areas (Lindenmayer et al. 1991e; McKenney and Lindenmayer 1994). However, recent improvements in design have increased nest box longevity, and some studies have shown an increased use of nest boxes by Leadbeater’s possums in montane ash forests (Harley 2016). In contrast to sub-alpine (snow gum) woodlands and lowland swamp forests, the vegetation structure in montane ash forest makes it more difficult to position nest boxes at heights (of at least 15 m) matching movement pathways for the possum (Harley 2006). Of 155 nest boxes being monitored in montane ash forest as part of ‘Project Possum’, 32 (21%) currently (as at December 2015) show signs of use by Leadbeater’s possum (with typical evidence being distinctive nesting material) (Harley 2016).

Implications for conservation management:

• The current and projected status of the lowland subpopulation of Leadbeater’s possum is parlous, and this subpopulation is unlikely to persist without significant ongoing management actions.

• Management to reduce the likelihood of severe bushfire will be critical for the long-term persistence of Leadbeater’s possum in lowland swamp forests.

• The extent and connectivity of suitable habitat should be enhanced through revegetation and ongoing use of nest boxes.

• Captive breeding and translocations to comparable suitable habitat in Yellingbo and nearby areas will be required as insurance, with care in taking individuals from the current wild population that such take does not significantly jeopardise the viability of that existing wild population.
As the abundance of suitable natural hollows will decline further in coming decades, other alternative approaches are being investigated to provide nesting sites to supplement existing hollows. Trials are currently underway to investigate if artificial hollows can be excavated in younger trees to simulate the dimensions of natural hollows used by Leadbeater’s possum (Leadbeater’s Possum Advisory Group 2014b). As at December 2015, initial results show that some Leadbeater’s possum colonies use excavated hollows within three months of excavation (Department of Environment Land Water and Planning 2015a), however further monitoring is required to investigate if these are suitable in all seasons and over longer time periods, to evaluate efficacy and to assess cost-effectiveness of any application to broader scale.

Thinning, where the density of stems is reduced by harvesting to increase the growth rate of the remaining stems, has also been suggested as a method to accelerate hollow development. This approach is currently being trialled with the aim of developing forest management strategies at the stand and landscape scale to accelerate the development of key habitat features for Leadbeater’s possum (P. Baker pers. comm.).

3.4.9. Habitat critical to survival

Given the current Critically Endangered status of Leadbeater’s possum, and its predicted severe ongoing decline, including significant risks of extinction, all current and prospective suitable habitat is critical for its survival, and necessary for its recovery.

3.5. Diet

3.5.1. Foraging and diet

Leadbeater’s possums mostly forage on the trunks and major branches of eucalypts and mid-storey (or sub-canopy) shrubs. The majority of the diet comprises exudates. These include carbohydrate-rich secretions (lerp and honeydew) excreted by hemipteran insects, and manna, gum and sap exuded by some species of trees (mostly smooth-barked eucalypts) and shrubs (including Acacia, Leptospermum and Melaleuca), sometimes from and due to incisions made by the possums themselves in trunks and branches (Smith 1980; Harley 2005). The nutritional value of plant exudates may vary significantly between different plant species and tree ages, and between different forest types, suggesting that food resource availability may be highly heterogeneous in these forest ecosystems (Lindenmayer et al. 1994a). The importance of exudates in the diet indicates that a major factor in determining habitat suitability is the occurrence, abundance and age of particular plant species that provide relatively abundant exudates. Modelling has indicated that food availability may be a critical limiting factor, at least in some forest types and ages (Lindenmayer and McCarthy 2006). However, it is difficult to determine if food is limiting given the varied composition of the species’ diet.

Other than exudates, arboreal arthropods (including beetles, spiders and, particularly, large crickets) comprise a significant component of the diet, and make up much of the protein intake (Smith 1980; Smith 1984a; Harley 2005).

Food availability and diet may vary seasonally, with gum comprising a greater proportion of the diet in winter (Smith 1984a), presumably because the abundance of many invertebrates and exudates declines then (Smith 1980; Woinarski and Cullen 1984; Loyn 1985): and there
may be an ‘absolute shortage of energy resources (exudates) during late winter and spring’ in montane ash forest (Smith 1984a). Eucalypt nectar and pollen are also taken occasionally (Smith 1984a), and this resource is also highly dynamic, with flowering in mountain ash restricted to trees older than 30 years (and thereafter increasing with age), and trees flowering heavily only every second year (Smith 1984a).

Leadbeater’s possums typically forage singly and diffusely around a communally-shared den site (a ‘central place forager’). Energetic costs of foraging may be high (Smith et al. 1982), such that linear strips of habitat may be unsuitable because individuals would have to forage over longer distances than in home ranges of a similar area in continuous habitat in montane ash forest (Lindenmayer et al. 1993b). Energetic costs of foraging are probably reduced where there is a near continuous cover of foliage in tall understorey shrubs or eucalypt regrowth, allowing economical travel across this vegetation layer for this non-gliding species.

3.5.2. Food supplementation

There have been some recent limited trials involving the provision of supplementary food to wild Leadbeater’s possums at Lake Mountain and Yellingbo, particularly at Lake Mountain following the 2009 bushfires. Results from these trials have shown that Leadbeater’s possum will use artificially supplied foods (J. Antrobus and D. Harley pers. comm.). However, such supplementation is unlikely to have any appreciable benefit other than at the very local level or as an emergency response (Leadbeater’s Possum Advisory Group 2014b).

In some areas, habitat manipulations may be warranted to regenerate understorey, including wattle or tea tree, to increase food availability in areas where nesting resources are available but foraging habitat is lacking. Such manipulation may facilitate recolonisation of currently unoccupied areas once the understorey has regenerated sufficiently. Research on the efficacy of such manipulation is currently proposed by ANU.

Implications for conservation management:

- The energetic costs of foraging relative to the dispersion and nutritive value of available food resources indicate that small fragments and linear strips are less suitable habitat than larger blocks of continuous habitat.

- Food availability may be a limiting factor at some sites or seasons, or after major disturbance. There may be some scope for increasing the likelihood of retaining or increasing colony persistence or increasing productivity, or increasing the likelihood of translocation success, using food supplementation. However, this is likely to be practical and applicable only at local scale and for particularly susceptible or important colonies.

Priority research needs to enhance management:

- Further research would be useful to evaluate where habitat manipulation could be used to increase future food resources, and to assess its cost-effectiveness.
3.6. Social structure

Leadbeater’s possums live in small matriarchal communal social groups (‘colonies’) of two to twelve (but currently more typically two or three) individuals, with colonies normally including only one reproductively active female and male plus young or sub-adult and adult offspring (Smith 1984b; Lindenmayer and Meggs 1996; Harley 2005; Harley and Lill 2007). In high quality habitat, colonies occupy actively defended territories of 1–3 ha (Smith 1984b; Harley 2005), that contain multiple den sites (Lindenmayer and Meggs 1996; Harley 2004b). In the absence of disturbance, colonies have long-term site fidelity (Lindenmayer et al. 2013b). Social structures and home range characteristics are less well known for colonies in spatially heterogeneous landscapes, notably where contrasting nesting and foraging habitats abut.

Female dispersal is greater than male dispersal (Smith 1984b) and females (and probably any dispersing individuals) are subject to higher rates of mortality. Dispersal into established colonies is more common than new colony formation in unoccupied habitat. Dispersal is strongly tied to the onset of reproduction, and hence animals are likely to be searching for breeding opportunities when dispersing (Harley et al. 2005). There is a biased adult sex ratio, of about three males per female (Smith 1984b; Lindenmayer 1996b).

3.7. Demography and breeding biology

3.7.1. Demography and reproduction

Longevity is typically five to eight years in the wild, with the maximum age recorded being ten years (Smith 1984b; Lindenmayer and McCarthy 2006). Age at first breeding is typically two years (Smith 1980; Lindenmayer et al. 1993d; Lindenmayer and Possingham 1995c, 1995a; Harley and Lill 2007). Generation length is considered to be six years (Woinarski et al. 2014; Threatened Species Scientific Committee 2015).

However, some demographic characteristics vary among subpopulations in different habitats: for example, the mean reproductive life in adult females in a montane ash forest site was reported to be 1.6 years, but at least 3.3 years at Yellingbo (Smith 1984b; Harley 2005; Smith and Harley 2008).

The reproductive rate is relatively low, with typical litter size of 1 to 2 young per breeding female (and hence per colony) (Harley and Lill 2007). Reproductive success is probably related to food supply (Smith 1984b). Breeding is seasonal in montane ash forests, with most births between May and November, but breeding at Yellingbo occurs year-round (Smith 1984b; Harley 2005; Smith and Harley 2008). A second litter may be produced in any year if the first is lost, or they may breed twice annually, although with reproductive attempts in autumn/winter being less productive than those in spring/summer (Smith 1980, 1984b). Young remain in the pouch for 80-93 days (Harley 2005; Smith and Harley 2008), emerge from the nest at about 111 days, and remain in the natal territory for 7-14 months (for females) and 11-26 months (for males) (Smith 1980, 1984b; Menkhorst and Lumsden 1995). Monitoring at Yellingbo indicated that only about 20% of young survived to acquire breeding status within established groups (Harley 2005; Harley et al. 2005).
3.7.2. Captive breeding and translocation

The first captive breeding of Leadbeater’s possums was undertaken by Des Hackett in the early 1970s from animals captured in the Central Highlands (Preuss 2006). In 1981-82, these captive animals were transferred to Melbourne Zoo. With progeny from this founder stock, several zoos around the world subsequently bred the species and the captive population peaked at 77 individuals in 1986 (Myroniuk and Seebeck 1992; Myroniuk 1995). While this program was successful in terms of producing generations of offspring, it was not integrated into any broader conservation management strategy. With no designated outlet for young born in captivity, adults were segregated to reduce breeding rates and the population ultimately aged and declined (Harley and Lowry 2013).

In 2012, Zoos Victoria, initiated a new captive breeding program for Leadbeater’s possum targeting the lowland subpopulation given its genetic distinctiveness and its extremely high extinction risk in the short-term (Harley 2012). The objectives were to provide insurance against the extinction of the last lowland population, and provide a future source of animals to re-populate restored habitat in Yellingbo and at least two additional populations away from Yellingbo as risk-spreading against fire. In order to minimise impacts on the wild population, the collection rate of founders for captive-breeding has been restricted to 3-6 individuals per year (Harley 2015a). The target for the size of the captive-breeding program for lowland Leadbeater’s possum is currently 12 pairs. The current size (as at November 2015) of the captive population is six pairs (14 individuals), and no successful breeding has yet occurred in this population (Harley 2015a). Due to the small number of individuals remaining and the risk of inbreeding, there may be a need for genetic rescue including outbreeding to increase genetic diversity.

There are no current captive breeding populations for the core montane ash forest population.

Three small-scale translocation trials of Leadbeater’s possum have been undertaken to date: one in montane ash forest and two in lowland swamp forest at Yellingbo. None of these trials has resulted in the long-term successful establishment of translocated populations. In 1987, there was an unsuccessful attempt to establish captive-bred Leadbeater’s possums in montane ash forest (Macfarlane and Seebeck 1991), with the failure potentially due to the presence of resident possums at the release site. In 2002, a female of dispersal age was successfully translocated to an outlying site at Yellingbo with a solitary resident male (Harley 2002), and this resulted in the production of three young prior to the loss of the female, so was successful in the short-term. In 2004, five unpaired wild-caught individuals of dispersal age were translocated into unoccupied habitat at Yellingbo. This trial resulted in some initial persistence but ultimately failed when individuals dispersed from the release sites and were subject to high predation rates (D. Harley and J. Antrobus pers. comm.).

A recommendation from the most recent trial was that translocations may be more likely to succeed if established, cohesive social groups, rather than individuals, are moved (D. Harley pers. comm.). Techniques to enhance site fidelity post-release in order to reduce dispersal-related mortality are also likely to improve translocation success (D. Harley pers. comm.).
3.7.3. Causes of mortality

There is little available information on causes of mortality, but occurrence in sub-fossils deposited by sooty owls (Bilney et al. 2006; Bilney et al. 2010; Bilney 2014) demonstrates that owls prey on the species; and an unsustainably high level of predation for animals dispersing through unfamiliar areas was thought to have contributed to the failure of one of three trial translocation attempts (D. Harley and J. Antrobus pers. comm.).

However, predation has not been a major cause of adult mortality, or driven the current population decline, for the Yellingbo subpopulation (Harley 2015a). From a large sample of individuals that were radio-tracked at Yellingbo, there were just three adult mortality events, all coinciding with the dispersal of new animals into established colonies. One death resulted from female-female aggression, another from predation by a powerful owl *Ninox strenua* and the third from predation by a cat *Felis catus* or fox *Vulpes vulpes* (Harley 2005). The cause of high juvenile mortality at Yellingbo is unknown. Instead, the population decline of Leadbeater’s possum at Yellingbo is due to the severe decline in habitat conditions: numerous individuals have died in the wild ‘due to habitat decline in their territories’ (Harley 2015a).

Disturbance events that dramatically alter the environment can result in direct mortality of individuals. The 2009 bushfire resulted in greater than 95% mortality for Leadbeater’s possums on the Lake Mountain plateau (Harley 2016).

Although all known colony sites are now surrounded by a 200 m timber harvesting exclusion zone, if undetected animals are present on a coupe they are likely to be killed during timber harvesting (Lindenmayer et al. 2015b).
The main ultimate cause of mortality across the possum’s range is episodic habitat loss or gradual reduction in habitat quality associated with disturbance events and regimes. These are discussed in more detail in the Threats section below.

4. THREATS

The major threat to the Leadbeater’s possum is the ongoing reduction in the extent, quality and connectivity of suitable habitat, with this threat in part a historical legacy, in part a consequence of ongoing actions, and in part a future expectation based mostly on factors which are difficult to control (bushfire).

4.1. Historical causes of decline

Fossil, sub-fossil and historical records demonstrate that the species was formerly more widely distributed (Lindenmayer et al. 1991d; Lindenmayer et al. 1993d; Bilney et al. 2010), however the pattern and timing of historical decline is poorly resolved. Some decline probably occurred prior to European settlement, due to changes in climate and hence fire regimes and habitat extent, but the rate of decline has most likely accelerated since European settlement.

Extensive clearing and landscape modification (including draining of wetlands) – mostly in the decades from the late nineteenth to early twentieth century – removed almost all suitable habitat from the type locality and across the species’ lowland range (Macfarlane et al. 1997; Harley 2004c; Harley et al. 2005). The extent and occupancy of suitable montane ash forest has been diminished historically by changed fire regimes (notably to increased frequency of severe bushfire), associated with ongoing climate change and changes in management (Lindenmayer et al. 2011a; Burns et al. 2015), and – from the early decades of the twentieth century – reduction in the extent, quality and connectivity of suitable habitat due to the impacts of timber harvesting, including salvage logging to 1960 of large trees killed in the 1939 bushfire (Lindenmayer et al. 2008).

4.2. Current threatening processes

The ongoing reduction in the extent, quality and connectivity of suitable habitat has resulted in, and is projected to continue to cause, a reduction in resources required by Leadbeater’s possum for shelter, breeding, dispersal, and food availability, and hence to ongoing decline in population size and conservation status. The ongoing reduction in the extent, quality and connectivity of suitable habitat has occurred and continues to occur through a range of drivers:

- impacts of severe fire and changes in fire regime;
- timber harvesting;
- reduction in the abundance of hollow-bearing trees;
- eucalypt dieback and altered hydrology (for the lowland subpopulation).

In turn, ongoing habitat loss has resulted in, and will continue to cause, fragmentation (and thus reduced genetic diversity and viability) of subpopulations.
Furthermore, current and projected climate change is likely to exacerbate the ongoing reduction in habitat extent and quality, particularly through its impacts on the severity and frequency of bushfires.

4.2.1. Impacts of severe fire and changes in fire regime

Fire is a direct and indirect threat to Leadbeater’s possum. Monitoring of montane ash forest sites before and after the 2009 bushfires demonstrated that few if any Leadbeater’s possums survive in areas burnt by bushfires, regardless of fire severity (Lindenmayer et al. 2013c; Lumsden et al. 2013). Marked loss due to the 2009 bushfire was also reported for Leadbeater’s possum in snow gum woodlands (Harley 2016). Leadbeater’s possums are also less abundant on unburned sites where the surrounding landscape has been burned, suggesting that the population reduction effects due to bushfire are disproportionately higher than the fire’s extent itself (Lindenmayer et al. 2013c; Lindenmayer et al. 2015b).

Fire is the primary form of natural disturbance in montane ash forest, and the dynamics of post-fire vegetation succession critically influence habitat suitability for Leadbeater’s possum. However, these fire regimes have changed and continue to change in montane ash forests and sub-alpine (snow gum) woodlands, with bushfires now substantially more frequent than prior to European settlement (Lindenmayer et al. 2013c). The current pattern of severity and frequency of bushfires is resulting in ongoing diminution in the extent and quality of habitat for Leadbeater’s possum.

The impacts of changed fire regime are particularly evident in the reduced extent and increased fragmentation of old-growth forest (i.e. where dominant trees are >120 years old). At around the onset of European settlement, old-growth forest comprised at least 30% and possibly up to 60-80% of the mountain ash forest in the Central Highlands (Lindenmayer 2009). Its proportional extent has been estimated to be only about 1.1% (Lindenmayer et al. 2012; Lindenmayer et al. 2013a; Lindenmayer et al. 2015b).

The most extensive fire in recorded history was in 1939, with this fire burning about 85% of mountain ash forests in the Central Highlands (Burns et al. 2015). In 1983, sections of forest within the southern part of the species’ range were burnt in a severe bushfire. Regeneration from this fire now provides important habitat for the species. The next extensive bushfire was in 2009, with this fire burning about 34% of the approximately 200,000 ha of montane ash forest and sub-alpine (snow gum) woodlands considered to be potential habitat of Leadbeater’s possum, including 45% of the Leadbeater’s possum reserve (Leadbeater’s Possum Advisory Group 2014b).

Fire and fire regimes have now well-established consequences for the quality and extent of Leadbeater’s possum habitat. These impacts vary according to the age and structure of the forest at the time at which it is burnt, the severity of the fire, and the fire’s landscape context (largely the amount and connectivity of unburnt patches). In montane ash forests, a severe fire kills most understory vegetation and canopy trees (but releases their seed, allowing for a regeneration cohort), rendering the habitat unsuitable in the short term for Leadbeater’s possum. However, fire may promote the capacity for older trees to form hollows from fire scarring. If large old trees were present prior to the fire, many will remain as stags (or in some cases, as fire-scarred old live trees), providing suitable hollows for Leadbeater’s possum. In the period after fire, the abundance of this resource gradually (over decades) diminishes, as the stags collapse.
However, while hollows may be retained in burnt areas, it typically takes about 15 years post-fire before the understorey develops sufficiently to provide the other key component of suitable habitat. In the absence of other disturbance, by about 50 years after fire, the dense tall *Acacia* understorey senesces and thins out, reducing habitat quality again. The cohort of post-fire regeneration eucalypts takes about 120 years to mature sufficiently to start forming hollows suitable for Leadbeater’s possum, but – if undisturbed for this period – this cohort ultimately provides the hollows required for future suitable habitat.

If severe fire recurs at shorter intervals than the period required for hollow formation, the more recent fire will have more substantial consequences for habitat quality, as it will eliminate a high proportion of the stags that persisted after the earlier fire (Lindenmayer et al. 2011a; Lindenmayer et al. 2015b). Furthermore, young trees generally do not stand long after they are burned (Lindenmayer et al. 2013c), and areas repeatedly burnt by severe fire will not provide current or future hollow-bearing habitat for Leadbeater’s possum. Indeed, if the inter-fire interval is shorter than the time taken for mountain ash trees to reach reproductive age (approximately 15-20 years), they will be lost entirely from stands and be replaced with other species with shorter reproductive periods such as *Acacia* spp. (Lindenmayer et al. 2011a).

The less characteristic low intensity fires can stimulate some regeneration but may not kill all canopy trees, resulting in multi-aged stands that provide suitable denning and feeding habitat for Leadbeater’s possum (Lindenmayer et al. 2000).

The detrimental impacts of fire on Leadbeater’s possum habitat have been exacerbated where salvage logging has removed standing trees that survived the fire. Salvage harvesting occurred most extensively after the 1939 bushfire, but also occurred after the 1983 and 2009 bushfires (Lindenmayer et al. 2015b). Burned hollow-bearing trees in stands subject to salvage logging are now exempt from harvesting, however their collapse rates are higher because they are subject to increased exposure (Lindenmayer and Ough 2006).

While the most acute detrimental impacts to Leadbeater’s possum are due to severe bushfire, some pre-emption, prevention, suppression and recovery fire management measures may also pose some risks to Leadbeater’s possum and its habitat. Such actions may include the establishment of networks of fire breaks, and the felling of ‘hazardous’ large dead trees after fire.

4.2.2. Timber harvesting

Timber harvesting reduces habitat suitability, extent and connectivity in Leadbeater’s possum’s montane ash forest environments, but does not occur in the far smaller areas of sub-alpine (snow gum) woodland or lowland swamp forest habitat.

About one third of the Central Highlands landscape that is potential habitat for Leadbeater’s possum is available for timber harvesting (Leadbeater’s Possum Advisory Group 2014b). In the past 40 years, the conventional form of timber harvesting in Victorian ash forests has been clear-felling. Clear-felling is a method of harvesting in which all merchantable trees, apart from those to be retained for wildlife habitat or other values (e.g. water quality), in a defined coupe area are removed in a single operation (Department of Environment and Primary Industries 2014a). The remaining debris is burnt to provide a seedbed to regenerate the new stand of trees. This creates an even-aged area of forest with few or no hollow-bearing trees within the harvested part of the coupe. Harvest rotations are typically 60-80 years and hence the resulting regrowth trees will be harvested before they can develop
hollows (which occurs at >120 years). Older forest, including hollow-bearing trees, is therefore restricted to retained areas of forest within or surrounding the coupes. These areas of retained forest contribute to a mosaic of multi-aged forest at a landscape scale.

Since 2014, VicForests has commenced ‘regrowth retention harvesting’, with the intention of undertaking this modified form of harvesting in 50% of the area of ash harvested within the Leadbeater's possum range. Regrowth retention harvesting aims to increase the amount of retained habitat within the coupe by retaining clusters of trees as habitat islands or peninsulas, and is designed to retain stands of trees able to continue to grow on and in time form hollows and Leadbeater's possum habitat.

The majority of the current timber harvesting in Central Highland ash forests occurs in areas that regenerated after the 1939 bushfires, with small amounts from stands resulting from fires between 1900 and 1938. These forests are classified as regrowth forests and regenerating trees have typically not yet formed hollows.

There is no longer any harvesting of old-growth ash forest in the Central Highlands. All live pre-1900 ash trees are protected from harvesting, whether they are in a patch of old trees (i.e. old-growth forest), or where there are individual older trees scattered through younger forest (i.e. mixed-age forest). Although protected, these retained trees are susceptible to being killed or damaged during regeneration burns or later when exposed to wind storms (Lindenmayer et al. 2015b).

Extensive areas of ash forest have been harvested in the Central Highlands in the past 40 years. Leadbeater's possums do not occur in recently clear-felled areas (Lindenmayer et al. 2015b), and are unlikely to be present in these areas for at least 10-15 years after harvesting. A total of approximately 38,000 hectares of montane ash forest has been harvested in the Central Highlands since 1978 when clear-felling became the predominant form of harvesting. On average approximately 800 ha of ash forest is currently harvested per year within the range of Leadbeater's possum (figures from 2011/12 to 2013/14: Victorian government data).

As part of timber harvesting planning, VicForests conducts desktop and field assessments for Leadbeater's Possum Zone 1A and 1B habitat. Zone 1A and 1B habitat represents only a small proportion of the area in which Leadbeater's possum occurs (DELWP unpublished data), and prior to 2014, there was no requirement to specifically search for colonies of Leadbeater's possum before harvesting, with all assessments of the likelihood of Leadbeater's possum occurring in a site to be harvested based on habitat. Some proposed coupes are now being surveyed for Leadbeater’s possum colonies through VicForests’ pre-harvest surveys and DELWP’s targeted surveys. Recent surveys have located colonies of Leadbeater’s possum within coupes planned for harvesting (36% of the 42 sites sampled in proposed coupes (Nelson et al. 2015)).

Thinning of younger regrowth forests (typically 18-30 years old) occurs in some areas, with the aim of increasing the growth rate of the remaining trees. Although not all trees are harvested, thinning opens up the stand, removing the dense mid-storey connectivity needed by Leadbeater's possum for movement and foraging. However, thinning can accelerate the growth of trees and potentially the formation of hollows in these trees from damage caused during these operations.
Timber harvesting prescriptions have been established with the aim of reducing the impact of harvesting on Leadbeater's possum and other biodiversity values (Department of Environment and Primary Industries 2014b). Additional prescriptions have been recommended to increase protection for Leadbeater's possum and its habitat, especially the large old trees, and to rebuild the extent of old-growth forest (Lindenmayer 2009; Lindenmayer et al. 2013a; Lindenmayer et al. 2013b; Lindenmayer et al. 2015b).

In the Central Highlands, the average gross area of individual coupes is currently approximately 34 hectares, although coupes can sometimes be aggregated into larger areas (Lindenmayer et al. 2015b). Not all of the gross area is harvested, with on average approximately 32% of the coupe left unharvested (data from VicForests in 2014-15), due to a range of features, including streamside reserves, steep areas, Leadbeater's Possum Zone 1 habitat and aggregated retention areas. These areas retain some older forest, and can allow younger forest to mature. Post-harvesting regeneration that is surrounded by sufficient retained (older) habitat to support colonies could then form a spatial mosaic of age classes providing older forest for nesting and dense young forest for foraging. Leadbeater's possum can use regeneration from timber harvesting as foraging habitat after approximately 10-15 years (Smith and Lindenmayer 1992; Nelson et al. 2015), if there are suitable nesting sites nearby.

Salvage harvesting of trees killed or damaged in high-intensity bushfires is conducted to recover timber after fires. Salvage harvesting impacts Leadbeater's possum habitat by reducing the number of hollow-bearing trees and the prevalence of multi-aged forest (Lindenmayer and Ough 2006; Lindenmayer et al. 2008). In the Central Highlands, salvage harvesting took place after bushfires in 1926, 1932, 1939, 1983 and 2009. Salvage harvesting is subject to prescriptions that aim to protect large, live hollow-bearing trees (Department of Sustainability and Environment 2008a), and areas are protected where these large trees occur in densities that would have met the criteria for Zone 1A habitat prior to the fire. Unburnt patches within fire-affected areas are also retained until the surrounding area regenerates.

In addition to the direct impacts of timber harvesting on habitat availability for Leadbeater's possum, harvesting may have some indirect impacts, although the severity of such impact is not well resolved. Proliferation of the track network associated with harvesting may isolate some Leadbeater's possum subpopulations and reduce dispersal. Fires purposefully lit to facilitate germination following harvesting may also pose some risks of spreading beyond the harvested area.

4.2.3. Reduction in the abundance of hollow-bearing trees

This factor can be considered to be a consequence of other threats or as a threat itself, but it is included specifically here as a threat as it is such an important consideration for the future of this species. The quality of the montane ash habitat for Leadbeater's Possum has declined in recent decades due to a significant loss of hollow-bearing trees. Long-term monitoring over the last 30 years in the Central Highlands has shown that within unburnt areas, approximately 3.5% of dead trees collapsed per year during that period and approximately 1.5% of large, live hollow-bearing trees died per year (Lindenmayer et al. 2012). This loss of hollow-bearing trees is predicted to continue into the future, with most of the remaining dead trees from the 1939 fires predicted to collapse within 50 years. There is currently negligible development of new hollow-bearing trees, as 1939 regrowth is yet to form hollows. The combination of the loss of existing hollow-bearing trees and a current lack...
of development of new hollow-bearing trees is predicted to lead to an increasingly severe shortage of these trees in the next 30-70 years (Lindenmayer et al. 1990b; Lindenmayer et al. 2012).

4.2.4. Eucalypt dieback and altered hydrology (for lowland subpopulation)

Lowland swamp forest habitat at Yellingbo and in nearby areas is experiencing ongoing decline in habitat quality due to eucalypt dieback and reduced regeneration, resulting in an altered, more open forest structure. Largely due to such ongoing habitat deterioration, only about 15% of the 180 ha of lowland swamp forest in the Cockatoo Creek section of Yellingbo Nature Conservation Reserve now supports high quality habitat, and the population of Leadbeater’s possum in the reserve has declined severely across the monitored period of 2001-2015 (Harley 2016). This reduction in habitat quality is due to severe eucalypt dieback caused by altered hydrology of the Cockatoo Creek floodplain and lack of appropriate disturbance regime to promote natural regeneration of eucalypts and Melaleuca and Leptospermum understorey (Harley 2016).

4.2.5. Population fragmentation

An ongoing reduction in the extent of suitable habitat is likely to lead to increased fragmentation of the population into a series of variably-sized subpopulations. Isolated subpopulations may experience high risks of loss through stochastic events (notably bushfire) and loss of genetic heterogeneity, and consequently have a high likelihood of extirpation. The fate of such subpopulations (i.e. their probability of extinction) is influenced by habitat quality and extent, the initial population size and its genetic variability, the possum’s capability and extent of dispersal, the disturbance (i.e. fire and timber harvesting) regime, and characteristics of the landscape (Lindenmayer and Possingham 1995a, 1995c, 1995b, 1996b, 1996a). Very small isolated subpopulations have a high probability of extinction within 20-50 year periods (Lindenmayer and Possingham 1995c), but the relationship between initial population size and extinction risk is gradational (rather than characterised by a particular threshold in initial population size), and extinction risk in a subpopulation is also much influenced by disturbance regime and other factors. The factors contributing to isolation of subpopulations are not well resolved. Given Leadbeater’s possum’s reliance on continuous vegetation cover, roads may be barriers to dispersal and hence may serve to fragment populations (Lindenmayer et al. 2015b). Molecular analyses for the Yellingbo subpopulation indicate that population fragmentation can occur over very small spatial scales, even where continuous vegetation cover exists, suggesting the species is highly sensitive to habitat quality (Hansen 2008; Hansen and Taylor 2008).

4.2.6. Climate change

The climate of the Central Highlands is likely to change significantly in future decades, with high-confidence predictions of higher temperatures (mean annual temperature is expected to rise by 2030 to 0.4 to 1.1°C above that of the 1986-2005 period), a higher frequency of days of extreme heat, increased incidence and longevity of meteorological drought, and harsher fire-weather climate (Grose et al. 2015). These projections largely maintain or accelerate climate trends evident over recent decades, which have contributed to ongoing reduction in the quality and extent of habitat suitable for Leadbeater’s possum, and can be expected to continue to exacerbate these trends.
Ongoing increases in the incidence of drought and high temperatures are likely to lead to further marked increase in the frequency and intensity of bushfires (Williams et al. 2009; Dutta et al. 2016), and hence to more frequent acute episodes of high mortality of possums, and chronic marked reductions in the landscape-scale abundance of hollow-bearing trees.

Regardless of the associated increased risks of severe bushfire, a higher incidence of drought and of extremely hot days is also likely to lead to high rates of mortality of large trees. For example, elevated rates of tree mortality were reported for the period 2004 to 2011 (during which 23% of large living trees died on unburned sites), associated with drought conditions (Lindenmayer et al. 2012; Lindenmayer et al. 2013a). While such drought-killed trees may stand as stags in the landscape, they are more susceptible to collapse during and after severe bushfire than are large living trees (Lindenmayer et al. 2012), so an increased incidence of severe drought in the future will result in further reductions in the abundance of hollow-bearing trees, and hence to decline in the extent and quality of habitat suitable for Leadbeater’s possum.

Furthermore, because mountain ash and alpine ash have relatively narrow constraints of climatic suitability (Lindenmayer et al. 1996), climate change may lead to a reduction in the distributional extent of these two species. It may also lead to distributional contraction indirectly because an increased incidence of severe fire due at least in part to climate change may reduce the area occupied by ash species, where fires recur at intervals shorter than their time to maturity.

Climate change may also affect food availability for Leadbeater’s possum, through changes in the abundance and diversity of invertebrates, the production and persistence of exudates, and the frequency and productivity of flowering events. There is only limited information to specifically link these factors to climate characteristics in montane ash systems or to predict the impacts of climate change on food resource availability, however climate conditions have been shown to cause a major reduction in the availability of some types of food for Leadbeater’s possum (Smith 1980; Smith 1984a; Lindenmayer and Possingham 1995c), and breeding success in Leadbeater’s possum is ‘closely related’ to the abundance of some food resources (Smith 1980; Lindenmayer and Possingham 1995c). More generally, for some Victorian forest systems, drought has been shown to cause a reduced incidence of eucalypt flowering and also a decline in bird species for which invertebrates comprise a high proportion of diet (Mac Nally et al. 2009).

It is possible that an increased incidence of days of extreme heat may narrow the range of hollows that are suitable as den and breeding sites for Leadbeater’s possum, but there is insufficient evidence to assess the likelihood of such change.

5. LEGISLATIVE, POLICY AND PLANNING CONTEXT

5.1. The legislative and the policy environment
This Recovery Plan is informed and guided by relevant Commonwealth and State legislation and policies as well as Australia’s obligations under various international agreements.
5.2. National threatened species policy

In 2015, the Australian Government released the Threatened Species Strategy, which committed to a new actions-based approach to protecting and recovering Australia’s threatened plants and animals. The Leadbeater’s possum was identified in the Strategy as a species requiring emergency intervention to avert extinction. Targets to measure success included 20 threatened mammals with improved trajectories by 2020, including the Leadbeater’s possum.

The Australian Government Environment Minister also approved an ‘Action Plan’ for the Leadbeater’s possum in August 2015 (https://www.environment.gov.au/biodiversity/threatened/publications/leadbeaters-possum-action-plan), which provided additional advice on conservation management for this species, including commitments of on-ground funding to improve habitat, research initiatives, and the development of a new Recovery Plan.

5.3. Victorian state policy and planning

The Leadbeater’s possum is protected under Victoria’s state policy and planning framework. Although protection applies to both public and private land, the possum is found almost exclusively on public land, with less than 1% of records on private land. As such, the planning effort is greater for public land. Outlined below are the key policy, planning and management elements relevant to the Leadbeater’s Possum, with further information on existing and previous conservation measures provided in Section 6.1.

Land management agencies of the Victorian State Government use park and forest management plans to provide for the balanced use of the public land which the possum inhabits. Key current land planning documents include but are not limited to the Central Highlands Forest Management Plan 1998 under the Forests Act 1958 (Department of Natural Resources and Environment 1998), the Yarra Ranges National Park Management Plan 2002 and the Baw Baw National Park Management Plan 2005 (both prepared by Parks Victoria under the National Parks Act 1975).

The forest management plan creates the Forest Management Zone system. These zones specify which areas are used as general management zones (GMZ) managed for a range of uses and values including timber harvesting, special management zones (SMZ) which are managed to retain specific features and in which modified harvesting is allowed, or special protection zones (SPZ), areas in state forest managed for conservation. SPZs are included in the CAR reserve system as ‘informal reserves’. SPZs and SMZs can be altered during a zoning review.

Forest management zones are of particular importance to commercial timber harvesting operations which intersect with the Leadbeater’s possum distribution in the Central Highlands. Timber harvesting is permitted in GMZs and SMZs of state forest, subject to the Allocation Order 2013 (as amended) and ensuring compliance with the regulatory framework outlined in the Code of Practice for Timber Production 2014 (Department of Environment and Primary Industries 2014b) and the associated suite of management standards and procedures (Department of Environment and Primary Industries 2014c). These documents contain specific regulatory requirements that must be complied with when undertaking timber
harvesting activities and include actions to protect species like the Leadbeater’s possum and its habitat.

VicForests, the state-owned government enterprise responsible for the commercial sale of timber from state forests on behalf of the Victorian State Government must comply with these regulatory requirements. VicForests undertakes coupe planning and applies additional modified harvesting methods to further manage risks associated with potential impact to the Leadbeater’s possum. Key initiatives include regrowth retention harvesting, pre-harvest surveys and research into improvements to silvicultural practices.

The Victorian Government has established an independent Forest Industry Taskforce to provide leadership and reach common ground on future issues facing the timber industry, job protection, economic activity, and the protection of native flora and fauna and threatened species, such as the Leadbeater’s Possum. The primary area of focus for the taskforce will be on future use and management of state forests in eastern Victoria, including the Central Highlands. The taskforce will seek to jointly achieve broad community and cross-parliamentary support to adopt and implement the agreed outcomes. The taskforce is working to provide recommendations to government by 30 June 2016. Further information about the taskforce can be found at: http://www.dpc.vic.gov.au/.

5.4. National forest policy

The Native Forest Policy Statement (Anon 1992) described three complementary mechanisms required to achieve nature conservation objectives:

“First, parts of the public native forest estate will continue to be set aside in dedicated nature conservation reserve systems to protect native forest communities, based on the principles of comprehensiveness, adequacy and representativeness. The reserve system will safeguard endangered and vulnerable species and communities. Other areas of forest will also be protected to safeguard special areas and to provide links where possible between reserves or other protected areas. Nature conservation reserves will be managed so as to protect their values. Second, there will be complementary management outside reserves, in public native forests that are available for wood production and other commercial uses and in forests on unallocated or leased Crown land. Third, the management of private forests in sympathy with nature conservation goals will be promoted” [p. 7].

The first (the establishment of a reserve system comprising dedicated conservation reserves that will safeguard threatened species) and second components are especially relevant for Leadbeater’s possum conservation, whereas the third component is largely irrelevant in this case because little of the possum’s distribution occurs on private lands.

The National Forest Policy Statement is implemented in part through Regional Forest Agreements (RFAs), which are 20-year agreements between the Australian Government and state governments with an objective to provide a balance of environmental, social and economic outcomes in the management of Australia’s native forests. They facilitate development of an internationally competitive wood and wood products industry; develop and implement ecologically sustainable forest management and use; promote the conservation and management of privately owned forests, and establish a comprehensive, adequate and representative (CAR) forest reserve system consistent with the ‘JANIS’
Within RFA areas, forestry operations carried out in accordance with the RFA are exempt from the provisions of the EPBC Act, except where they are likely to have significant impact on matters of national environmental significance associated with World Heritage or Ramsar wetland sites.

The Leadbeater’s possum’s range is entirely within the Victorian Central Highlands RFA area. The Central Highlands RFA is one of five RFAs in Victoria and was signed on 27 March 1998 following a comprehensive regional assessment of the social, economic, environmental and cultural and natural heritage values of the region’s native forests.

The Central Highlands RFA recognised that the CAR reserve system and the application of management strategies and management prescriptions in the Central Highlands Forest Management Plan, developed under Victoria’s Forest Management System, provides for the protection of threatened species and communities. Changes to the RFA occur through the written agreement of the Australian Government and the Victorian Government.

The biodiversity conservation aim of the Central Highlands Forest Management Plan is ‘to ensure that all indigenous plant and animal species and communities survive and flourish throughout the Central Highlands’ (Department of Natural Resources and Environment 1998). It included guidelines for threatened species generally and for Leadbeater’s possum specifically, which are now outlined in Management Standards and Procedures for Timber Harvesting Operations (Department of Environment and Primary Industries 2014c).

The RFA notes that management guidelines and prescriptions in the Plan may be reviewed ‘when new information on the impact of forest management or utilisation activities on biological or cultural values becomes available’ and ‘if the status of a threatened species changes’.

In relation to the CAR reserve system, the JANIS criteria noted that the forest reserve system should be considered in the context of the overall landscape (i.e. with consideration of the complementary conservation values and benefits derived from sympathetic management of unreserved lands). JANIS noted that “The CAR reserve system comprises areas of both public and private land that are reserved specifically for conservation purposes, and where the tenure of the reserved areas is secured by legislation or other methods appropriate for the area concerned” (p. 6) (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee 1997).

Although JANIS recognised that the forest CAR reserve system could comprise a mix of dedicated reserves (i.e. national parks and conservation reserves), informal reserves (SPZs) and prescriptions, it also indicated the primacy of dedicated reserves within this mixture:

“All reasonable effort should be made to provide for biodiversity and old-growth forest conservation and wilderness in the Dedicated Reserve system on public land. However, where it is demonstrated that it is not possible or practicable to meet the criteria in the Dedicated Reserve system, other approaches will be required”, and

“In situations where it is not possible or practicable to include conservation values into Dedicated Reserves, it is appropriate for areas to be reserved under other secure tenure or management arrangements” (p. 6) (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee 1997).
JANIS provided guidelines on the interpretation of ‘adequacy’ for the extent of the required reserve system. It defined ‘adequacy’ as “the maintenance of ecological viability and integrity of populations, species and communities” (p. 5), indicating that an adequate reserve system should be of sufficient extent to maintain the long-term viability of species. This objective is also explicit in the JANIS statements that:

“Reservation to conserve biodiversity needs to focus on the continued viability of species and ecosystems rather than the attainment of area targets” (p. 11) (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee 1997),

and

“the reserve system should seek to maximise the area of high quality habitat for all known elements of biodiversity wherever practicable, but with particular reference to … the special needs of rare, vulnerable or endangered species” (p. 13) (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee 1997),

and

“no precise basis exists for determining criteria that provide for adequacy. However, the general rule is that the chances of long-term survival increase with increased proportions of populations of forest ecosystems reserved and appropriately managed” (p. 5) (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee 1997).

JANIS also noted that individual reserves should be of sufficient size to provide for the viability of populations of species within them:

“reserves should be large enough to sustain the viability, quality and integrity of populations” (p. 13) (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee 1997).

Hence, for Leadbeater’s possum, this policy should be interpreted as indicating that (i) the reserve system should wherever possible and practicable be based largely on dedicated reserves, (ii) the reserve system (the combined dedicated, informal and prescription components) should be sufficiently large to maintain the long-term population viability of the species; (iii) the reserve system should be appropriately managed, and (iv) populations and suitable habitat outside reserves are managed in a manner that complements the role of reserves, and contributes significantly to the overall conservation objectives and outcomes.

5.5. International agreements and obligations

Australia is a signatory to a number of international agreements relevant to the conservation of Leadbeater’s possum. This plan is consistent with and is guided by Australia’s international responsibilities under these agreements, and the plan’s implementation will support meeting these obligations. These include:

- United Nations 2015 sustainable development goals which include to ‘take urgent and significant action to reduce the degradation of natural habitats, halt the loss of
biodiversity and, by 2020, protect and prevent the extinction of threatened species’ (Goal 15.5).

- Convention on Biological Diversity’s Aichi Target 12 that states ‘by 2020 the extinction of known threatened species has been prevented and their conservation status … has been improved and sustained”.

The conservation of Leadbeater’s possum relates to the sustainable management of its temperate forest habitat. Australia is a signatory of the Montreal Process (Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests). This notes that ‘a key objective for the conservation of biological diversity is slowing down the rate of population decline, and species depletion and extinction due to human factors’, and requires the Australian government to report regularly on the number and status of forest species at risk or in serious decline, and also on management actions taken to attempt to safeguard such species.

This Recovery Plan considers some ex situ and translocation management actions. Although not binding, it is appropriate that such actions for Leadbeater’s possum should be consistent with international standards and protocols for ex situ conservation and translocation (IUCN/SSC 2013, 2014) as well as relevant Victorian government legislation and policy.

5.6. Implications for this Recovery Plan

The ongoing deterioration in the conservation status of the Leadbeater’s possum, leading to its recent uplisting to Critically Endangered status, indicates that expectations and obligations under a range of international, national and state policies are not being met.

Conservation practice and policy has not yet ‘maximised’ the chances of the long term survival of the Leadbeater’s possum as required for recovery planning under the EPBC Act.

6. CONSERVATION AND MANAGEMENT HISTORY

6.1. Existing conservation measures

Leadbeater’s possum has been the subject of much conservation research and management activity extending for more than three decades. Much of this activity was framed by the previous Recovery Plan (Macfarlane et al. 1997), and overseen by a Leadbeater’s possum recovery team. That conservation effort built a substantial legacy and foundation for current conservation activity. The recent review of that initial Recovery Plan (http://www.environment.gov.au/biodiversity/threatened/recovery-plans/comment/draft-recovery-plan-leadbeaters-possum) summarised that research and management effort, and the extent to which each action was implemented.

More recently, the Victorian Government has focused a major conservation management effort through the Leadbeater’s Possum Advisory Group (LPAG), which was established in June 2013. LPAG was established to provide recommendations to government that aimed at ‘supporting the recovery of the possum while maintaining a sustainable timber industry’ in the Central Highlands. LPAG recommended a package of actions which aimed to slow the
projected decline in population numbers in the Central Highlands, by providing protection to
known colonies, protecting current high quality habitat, expanding future old-growth forest
and possum habitat in the future, to proactively increase the availability of nest sites at
selected locations (through provision of nest boxes and artificial hollows), and to support
improving knowledge to more effectively implement management actions (Leadbeater’s
Possum Advisory Group 2014a). On 14 April 2014, the Victorian Government accepted all
13 recommendations and announced that it would invest $11 million to implement these over
the following five years. While making important improvements to the conservation of
Leadbeater's possum, due to the dual role of the terms of reference where the conservation
measures needed to be within a sustainable timber industry, the package of actions
recommended by LPAG did not extend as far as would have been possible if the focus was
purely on the conservation of the species (Leadbeater’s Possum Advisory Group 2014b).
The effectiveness of the implementation of this package of actions is regularly assessed and
will be formally evaluated in 2018 (Leadbeater’s Possum Advisory Group 2014a).

The LPAG recommendations were incorporated into a revised Victorian Action Statement in
2014 which outlines the conservation measures that are currently in place for Leadbeater’s
possum (Department of Environment and Primary Industries 2014a). The aim of the Action
Statement is to ensure that Leadbeater’s possum can survive, flourish and retain its potential
for evolutionary development in the wild. Further measures were introduced in 2015,
including accelerating the LPAG targeted survey program to more quickly locate and protect
an additional 200 Leadbeater’s possum colonies, application of remote sensing techniques
to map key habitat features, and the introduction of a risk-based pre-timber harvesting
survey program deploying new survey methodologies.

Overall 34% of the potential habitat within the distribution of Leadbeater’s possum is
protected in dedicated Reserves (i.e. parks and reserves managed by Parks Victoria)
(Leadbeater’s Possum Advisory Group 2014b). The largest areas of reserved ash forest are
in the Yarra Ranges National Park, which includes three extensive water catchments. The
major sub-alpine (snow gum) woodland sites inhabited by Leadbeater’s possum are
protected within the Yarra Ranges National Park (Lake Mountain), Mount Bullflight Nature
Conservation Reserve and Baw Baw National Park. The lowland swamp forest occupied by
Leadbeater’s possum is fully protected within the Yellingbo Nature Conservation Reserve
(Department of Environment and Primary Industries 2014a).

A further 14% of the potential habitat of the species is protected in Special Protection Zones
(SPZ) within state forest, resulting in 48% of the potential habitat area reserved in parks or
SPZs. This includes a ‘Leadbeater’s possum reserve system’ which was established in 2008
to protect priority areas of habitat, with the focus on old-growth forests as these were most
likely to provide habitat into the future. This system comprises 30,500 ha of high quality
habitat (Smith and Morey 2001), incorporating parts of the existing National Parks and with
the areas in state forest incorporated into SPZs. All areas of mapped old-growth ash forest
(> 5 ha) in the Central Highlands are protected in SPZs and are now buffered by 100 m to
provide further protection (Leadbeater’s Possum Advisory Group 2014b).

Within the remaining area of state forest that is available for timber harvesting, additional
areas are excluded from harvesting due to biodiversity, regulatory, operational and
prescriptive reasons (21% of the potential habitat of Leadbeater's Possum: Leadbeater’s
Possum Advisory Group (2014b)). Prescriptions for protecting high quality Leadbeater’s
possum habitat were first implemented in 1998 through the Central Highlands Forest
Management Plan (Department of Natural Resources and Environment 1998) and updated
Mixed-aged forest with high densities of old trees are protected using Zone 1A prescriptions. Zone 1A habitat is defined as more than 10 live mature or senescent hollow-bearing ash trees per 3 ha, in patches greater than 3 ha. Zone 1B habitat is defined as more than 12 live or dead, hollow-bearing ash trees per 3 ha in patches greater than 10 ha and with wattle density exceeding 5 m²/ha (Department of Environment and Primary Industries 2014a).

Timber harvesting and associated roading is currently excluded from areas of forest meeting the criteria for Zone 1A or Zone 1B. The locations of SPZs are reviewed during periodic zoning reviews. Survey standards have been released to provide interpretation and guidance on the definition of Zone 1A and 1B (Department of Environment Land Water and Planning 2015b). Using these definitions there are only limited areas that now qualify as Zone 1 habitat in the Central Highlands.

To protect the species where it occurs in state forests outside these areas of high quality habitat, LPAG recommended a new measure to protect known colonies (Leadbeater’s Possum Advisory Group 2014a). As a result, 200 m radius timber harvesting exclusion zones (12.6 ha in size), have now been established around the location of all Leadbeater’s possum records since 1998, excluding those burnt with high fire severity in the 2009 fires. Exclusion zones are also being established around all new records, with LPAG recommending a review after 200 new records whose exclusion zones impacted General Management Zone or Special Management Zone in state forest, or after two years of intensive surveys, whichever came first. To facilitate the location of new records DELWP is conducting extensive targeted surveys and is working with the community and other organisations to obtain additional records. Within the first year of surveys in 2014-15, 116 new location records were obtained, 71 in state forest and 45 in national parks (Department of Environment Land Water and Planning 2015a).

DELWP’s targeted surveys select sites based on areas where previous occupancy modelling (Lumsden et al. 2013) had predicted a high likelihood of the species occurring, and/or close to existing records of the species (Nelson et al. 2015). A two year timber harvesting moratorium (April 2014 to April 2016) was established for areas predicted to have a greater than 65% likelihood of the species occurring while surveys are undertaken, with harvesting deferred from 14,800 hectares of state forest. Of the 71 new records recorded in 2014-15 in state forest, 50 were from the DELWP targeted surveys, from sampling 113 sites (44%). There were records from all age classes sampled, including young regrowth from fires and timber harvesting (15 – 36 years old). Clusters of records and their associated timber harvesting exclusion zones are being developed to increase the size of the protected area to improve long term viability of these colonies (Nelson et al. 2015).

The establishment and regular checking of nest boxes has also progressed recently as a survey and monitoring tool, with particular applicability in sub-alpine woodland and lowland swamp forest habit and with varying success in montane forests (Harley 2016). Project Possum is a collaborative project between Parks Victoria, Zoos Victoria and the Friends of Leadbeater’s Possum that aims to provide long-lasting nest boxes at strategic locations within Leadbeater’s possum’s range in the Central Highlands. As at January 2016, 414 nest boxes have been installed (245 in sub-alpine woodland and 169 in montane ash forest).
In implementing the LPAG recommendations (Leadbeater’s Possum Advisory Group 2014a), VicForests is now undertaking regrowth retention harvesting on at least 50% of the area of ash harvested within the Leadbeater’s possum range. Regrowth retention harvesting involves the retention of clusters of trees as habitat ‘islands’ or ‘peninsulas’ such that 50% of the coupe is close to retained forest. This design allows for some hollow-bearing trees to be preserved on coupes within the 60-80-year harvest rotation, and promotes a mosaic of old and young forest once the coupe has regenerated. This retained habitat can assist recolonisation of biodiversity to harvested areas over time. Trials are underway to test the effectiveness of alternative methods of regeneration after harvesting (Department of Environment Land Water and Planning 2015a), rather than the traditional ‘regeneration’ or ‘slash burn’ which can accelerate the decay and collapse of non-targeted hollow-bearing trees (Lindenmayer et al. 2013a; Lindenmayer et al. 2013b).

Intensive, widespread bushfires are a significant threat to the ongoing persistence of Leadbeater’s possum. LPAG recommended actions aimed at increasing the protection of Leadbeater’s possum colonies and habitat through intensified fire planning and management. Where possible and appropriate, active fire management activities will be used to protect identified colonies and high-quality habitat from bushfire, taking into consideration other threatened species requirements (Leadbeater’s Possum Advisory Group 2014a). This includes suppression activities and fuel management in adjacent drier forest types. Strategic fuel breaks have been constructed to protect Melbourne’s water supply from fire. To reduce the risk of these breaks fragmenting Leadbeater’s possum habitat, bands of wattle and ash forest are retained at 100 m intervals in some areas, and removal of hollow-bearing trees is restricted (Department of Sustainability and Environment 2008b). Rope bridges are being trialled to investigate if these can reduce fragmentation impacts of fuel breaks and roads, with individuals observed using these to cross over roads (R. van der Ree pers. comm.).

Fire recovery protocols have been developed to assist in decision making and timely emergency management responses following bushfires. These protocols provide guidance on when intervention – such as providing additional nesting resources, supplementary food, artificial connectivity or translocation – is warranted. Following the severe impacts of the 2009 bushfires at Lake Mountain, additional nesting sites were provided and a supplementary feeding program undertaken over winter for three years following the fire. This was coordinated by Parks Victoria, with extensive volunteer participation from the Friends of Leadbeater’s Possum group. The few remaining animals made extensive use of the supplementary food provided (J. Antrobus and D. Harley pers. comm.).

Long-term population monitoring and nest box provisioning has been underway for the last lowland population at Yellingbo since the mid-1990s, and in 2012 a captive-breeding program was established by Zoos Victoria to support the recovery of this genetic management unit (Harley 2012). The captive-breeding program is linked with a major habitat restoration program that is underway for both Leadbeater’s possum and the helmeted honeyeater Lichenostomus melanops cassidix.

Since 2009, Parks Victoria and Greening Australia have undertaken targeted revegetation in active Leadbeater’s possum territories at Yellingbo Nature Conservation Reserve to compensate for the loss of dense vegetation structure and lack of natural regeneration. During 2013-15, almost 400,000 stems were planted at Yellingbo by Greening Australia, Parks Victoria and the Friends of Helmeted Honeyeater. During 2015-18, a further 792,000 stems will be planted by Greening Australia, the Friends of Helmeted Honeyeater and
Healesville Sanctuary with funding from the Commonwealth Government’s 20 Million Trees Programme.

Suitable floodplain forest is also being restored in the Coranderrk Bushland that adjoins Healesville Sanctuary, with future plans to release captive-bred Leadbeater’s possums there so that the breeding program includes free-ranging individuals.

Parks Victoria is working with adjacent landowners to fence off stream frontages and phase out grazing from areas to be added to the Yellingbo Nature Conservation Reserve, to improve water quality and protect native vegetation (Department of Environment Land Water and Planning 2015a). A deer control program was introduced in 2014 to attempt to reduce browsing on the revegetation. In addition revegetation plots are being fenced to exclude deer and native browsers.

The earlier Section 3. Background Information Informing Recovery Action summarises a very substantial evidence base resulting from decades of intensive research on Leadbeater’s possum and its environment. This research effort has been, and will continue to be, a crucial component of conservation management for this species. The historic and ongoing research effort is not reviewed here (see Harley (2016)), but this section briefly notes some recent and foreshadowed research activity that targets key knowledge gaps that, if filled, may substantially increase conservation management effectiveness.

- a radio-tracking study is being established to quantify den tree use, spatial habitat use and the habitat requirements of Leadbeater’s possum in a regrowth dominated landscape, including how the use of regrowth habitat for foraging may depend upon the proximity of contrasting habitat that provides hollows (research undertaken by ANU);

- a study is being established to assess options for habitat manipulation, specifically the extent to which suitable understorey vegetation can be developed in areas with hollow-bearing trees but currently without a dense understorey layer (ANU);

- high resolution aerial photography and remote sensing technology (LiDAR) will be used for the fine-scale detection and mapping of particular critical habitat features, notably hollow-bearing trees and understorey density, across the Central Highlands range, to allow high resolution mapping of habitat suitability and improve spatial habitat models (DELWP with input from VicForests and University of Melbourne);

- studies are being undertaken on options for increasing hollow (nest site) availability in a range of environmental settings, and the effectiveness of such options (community groups, DELWP, University of Melbourne VicForests and Zoos Victoria).

- a project has been developed to investigate future genetic management options for the lowland population (Monash University, Zoos Victoria and DELWP);

- a study is investigating alternatives to high intensity regeneration burns after harvesting to protect retained habitat (VicForests);

- studies are being undertaken to understand the biodiversity response to the use of regrowth retention harvesting systems as an alternative to traditional clear fell techniques (VicForests and ANU);
• forest models are being developed to better understand the implications of management actions on spatial and temporal changes to forest structure (University of Melbourne, VicForests and DELWP).

6.2. Other previously proposed conservation initiatives

The conservation of Leadbeater’s possum has attracted considerable interest from researchers, conservation organisations, and other non-government groups. Some conservation recommendations from these groups have been implemented, at least in part, through the recent Victorian Government initiatives (particularly through the Leadbeater’s Possum Advisory Group process) described in section 6.1.

However, other conservation recommendations have not been implemented. As part of the LPAG process many recommended actions were evaluated for their likely contribution to the recovery of the species (Leadbeater’s Possum Advisory Group 2014b). Some of these actions were subsequently excluded from their consideration because the LPAG process was predicated on the need to balance conservation and timber-harvesting objectives.

In this section, we provide a brief account of some recommendations proposed by non-government groups, in the context that these proposals have informed the objectives and actions described in section 7 of this plan.

A high profile recommendation from many conservation groups and some researchers has been for the establishment of a ‘Great Forest National Park’ that would very substantially increase the extent of the existing dedicated reserve system in the Central Highlands, and specifically include the vast majority of the distributional extent of the Leadbeater’s possum (Lindenmayer (2013); http://www.greatforestnationalpark.com.au/park-plan.html). The most comprehensive of such proposals encompasses and extends beyond the distributional extent of the Leadbeater’s possum, proposing the addition of ca. 355,000 ha of mostly montane ash forest to the existing ca. 180,000 ha of reserved area centred on the Central Highlands, with this addition including about 86% of the existing state forest extent (The Working Group for the Great Forest National Park 2015). The conservation status and needs of Leadbeater’s possum form a principal basis of the rationale for this enhanced reserve system, although only part of this area is likely to contain Leadbeater’s possum.

Another high-level conservation recommendation was that highlighted by the Threatened Species Scientific Committee in the Conservation Advice approved by the Australian Minister for the Environment:

“the most effective way to prevent further decline and rebuild the population of Leadbeater’s possum is to cease timber harvesting within montane ash forests of the Central Highlands” (Threatened Species Scientific Committee 2015).

That Conservation Advice also noted that ‘all populations of Leadbeater’s possum are important’ and recommended ‘protecting all current and future Leadbeater’s possum habitat’.

Additional to these broad recommendations, there have been some notable packages of specific recommendations aimed at enhancing the conservation outlook of Leadbeater’s possum, mostly through seeking to further reduce the detrimental impacts of timber-harvesting upon its habitat (Lindenmayer et al. 2013a; Lindenmayer et al. 2013b; Lindenmayer et al. 2014a; Lindenmayer et al. 2015b). Inter alia, these include explicit guidelines to:
• provide greater protection to current and prospective old-growth forest;
• increase the rotation period for timber-harvesting;
• increase the size of the protective buffer area around known Leadbeater’s possum colonies;
• be more inclusive in the definition of Leadbeater’s possum Zone 1A habitat (i.e. to lower thresholds of density of hollow-bearing trees, and include dead hollow-bearing trees within the defining criteria);
• enhance protection and increase buffer areas around all large hollow-bearing trees;
• protect all existing old-growth ash forest and expand the future old-growth estate; and
• replace clear-felling with regrowth retention harvesting.

Consensus among experts has indicated that, if enacted, most of these recommendations would provide substantial benefits to Leadbeater’s possum, including having a major impact in reducing the likelihood of their extinction (Leadbeater’s Possum Advisory Group 2014b). For example, Leadbeater’s Possum Advisory Group (2014b), concluded that a timber harvesting exclusion zone of 200 m radius around existing known colonies would have only a ‘low to medium’ impact on reducing extinction-risk, whereas increasing the exclusion zone to 500 m radius would have a ‘medium’ impact on reducing extinction-risk, and increasing it to 1 km would have a ‘high’ impact on reducing extinction-risk.

7. RECOVERY OBJECTIVES AND ACTIONS

7.1. Context

The recovery objectives and actions proposed here are informed by a set of general principles and requirements. These include:

(1) that the pre-eminent purpose of this Recovery Plan is to stop the decline and support the recovery of Leadbeater’s possum so that its chances of long-term survival in nature are maximised, consistent with the stipulations of recovery planning under the Environment Protection and Biodiversity Conservation Act 1999;

(2) that decades of research and management activity have provided a robust evidence base for recovery, and such evidence has formed the basis of a considered assessment of the likely efficacy of possible recovery actions (Leadbeater’s Possum Advisory Group 2014b). Recovery objectives and actions delineated here have been informed by this evidence base and will incorporate findings that arise from new and ongoing research;

(3) that while existing recovery actions have contributed to some conservation advances, they have been, and are likely to continue to be, insufficient to recover the species, hence a substantially new or more committed management response is required;

(4) that the overwhelming majority of the known population of Leadbeater’s possum is confined to the Central Highlands montane ash forest, and that the development of effective conservation management actions – including reducing the risk of landscape-scale fire – for this species in this region is most critical to the species’ likelihood of recovery;
but that, on current trends, there is an unacceptably high risk of extinction for the species in this region, especially through extensive bushfire, and hence there is a need to try to spread this risk through attempts to establish subpopulations of the species in the most suitable habitat outside this region;

that conservation effort needs to attempt to secure both the Central Highlands (montane ash and snow gum) subpopulations and the lowland swamp forest subpopulation (an Evolutionarily Significant Unit), with this latter one particularly at risk of imminent extinction;

that conservation success will not be achieved by management actions alone, but will depend also upon refinement and complementarity of existing and future planning and policy settings, such that these contribute appropriately to maximising the chances of long-term survival of Leadbeater’s possum in nature; and

that there remain important uncertainties about some candidate conservation management actions (such as translocation, effective fire mitigation options, accelerated hollow development), so this Recovery Plan should address these knowledge gaps and be flexible, responsive to new information, and capable of adaptive management.

7.2. Recovery objectives, actions and performance measures

7.2.1. Long-term recovery objective

To increase the extent, quality and connectivity of currently and prospectively suitable habitat, and its occupancy by Leadbeater’s possum, in order to maximise the probability of persistence of the species.

Rationale: Conservation planning for Leadbeater’s possum is a long-term proposition and commitment. Actions taken now to enhance its conservation status are unlikely to reverse the current decline in the extent of its suitable habitat or of its population over the 10-year period of this plan, but they will help to slow this rate of decline. These actions will provide a basis for promoting recovery and managing the species over the medium to long-term. And importantly, actions taken or not taken now will affect its likelihood of extinction over a 50 to 100 year timeframe.

Given some still existing substantial uncertainties about population size, the scale and impact of future threats and the likely benefits and practicality of potential actions, it is challenging at this stage to prescribe ‘acceptable’ and plausible target levels for the probability of long-term persistence of Leadbeater’s possum. No matter what set of conservation actions are taken, it is unlikely that its long-term fate can be guaranteed (i.e. that those actions would result in a 0% probability of functional extinction over the next 100 years). A reasonable and realistic long-term target to help frame the short-term objectives in this Plan is that those actions should collectively so benefit this species that its probability of extinction over a 100-year period becomes less than 0.01 (i.e. 1%). Note that this target is less ambitious (but probably more realistic) than that described in the previous Recovery Plan, which was to downlist the species from endangered to vulnerable within 10 years, and for the species to have ‘no more than a 1% probability of extinction over 250 years’ (Macfarlane et al. 1997).

Performance criteria are listed in the section below for a set of objectives operating over the lifetime of this Plan. It is less meaningful to attempt to provide comparable criteria for the
period beyond this plan, but the long-term objective described above would require the following outcomes:

- the total population size of Leadbeater’s possum stabilises and then increases over a 20-50 year period from now;
- risks to Leadbeater’s possum from catastrophe (notably extensive, severe bushfire) are managed effectively through securing viable subpopulations across an area that is at least as extensive as its distribution immediately prior to the 2009 bushfires;
- the extent and continuity of high quality habitat and old-growth forest is substantially increased;
- there is an ongoing commitment, with appropriate resourcing, to effective and enduring management of threats to this species, including effective management that results in a pattern of bushfire frequency and severity that is less detrimental to this species (and its forest environment) than that presently prevailing;
- the distinctive subpopulation in the lowland swamp forest is retained and its population size and the extent and suitability of its habitat are substantially greater than at present.

7.2.2. Recovery objectives, actions, outcomes and performance criteria for the lifetime of this Plan

The sections below describe a set of objectives, each with associated actions, performance criteria and timeframes for key deliverables. Note that not all deliverables are necessarily listed for each action.

The objectives and actions proposed in this section should be considered as an integrated and coherent package. These objectives and actions span a broad gamut of policy, management, research and other components, recognising the high profile but complex conservation context for this species. The set of objectives and actions described here includes all or components of conservation actions developed through the recent LPAG process and implemented through the Victorian Action Statement for this species (Department of Environment and Primary Industries 2014a), but the set described here also significantly extends these actions and includes new actions. This set of actions does not necessarily include all actions recommended outside the LPAG process (i.e. those described in section 6.2), but includes components of these and encompasses those components within a broader package that should collectively secure the conservation future for this species.

All of the actions and objectives in this plan will contribute significantly to the conservation of Leadbeater’s possum, and all individual actions are of high priority and need to be implemented. However, to assist in the orderliness of this implementation, actions are labelled (see section 8.1) as either ‘urgent’ (i.e. the conservation future of the species depends upon this action being implemented), ‘essential’ (i.e. the conservation future of the species will be jeopardised if this action is not implemented), or ‘highly beneficial’ (i.e. this action will contribute to the conservation future of this species).
Objective 1: All relevant existing and future planning and policy settings are reviewed and where required, refined and implemented in a manner that contributes appropriately to maximising the chances of long-term survival of Leadbeater’s possum in nature.

Rationale: Management actions alone will not be sufficient to recover the Leadbeater’s possum: that objective also needs harmonisation of existing and future planning and policy settings such that they collectively and coherently contribute appropriately to maximising the chances of long-term survival of Leadbeater’s possum in nature.

Action 1.1. Review and, where required, revise existing relevant planning and policy settings to ensure that they provide for maximising the chances of long-term survival of Leadbeater’s possum.

Action 1.2. Ensure that future relevant planning and policy settings provide for maximising the chances of long-term survival of Leadbeater’s possum.

Action 1.3. Ensure coordination between relevant planning and policy settings to maximise the chances of long-term survival of Leadbeater’s possum.

Performance criteria

1. All relevant plans and policy are compatible with, coordinated and contribute effectively to, the objective of maximising the likelihood of long-term survival of Leadbeater’s possum.

Deliverables

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>By end of 1st year of this Plan</td>
<td>All key relevant policies and plans are assessed to identify settings or practice that may contribute significantly to, or may be inconsistent with, the successful implementation of this Recovery Plan (Action 1.1). Any new key relevant policies and plans take accord of, are consistent with, and contribute significantly to the implementation of this Recovery Plan (Action 1.2) **</td>
</tr>
<tr>
<td>By end of 2nd year of this Plan</td>
<td>Settings in all key relevant policies and plans are refined to ensure alignment with this Recovery Plan, and effective coordination across plans and policies to achieve the Recovery Plan’s objectives (Actions 1.1 and 1.3) **</td>
</tr>
<tr>
<td>By end of 5th year of this Plan</td>
<td></td>
</tr>
<tr>
<td>By end of 10th year of this Plan</td>
<td></td>
</tr>
</tbody>
</table>

Action is ongoing thereafter
Objective 2: A whole of landscape management regime is in place ensuring that all currently suitable and prospective habitat across the species’ known range is maintained, enhanced and effectively managed to maximise its suitability for Leadbeater’s possum.

Rationale: The key conservation concern for Leadbeater’s possum is ongoing decline in the extent, quality and connectivity of suitable habitat. This objective seeks to focus explicitly on the maintenance and management of habitat that is currently suitable, and habitat that will become suitable in the future. Where appropriate, retention of habitat should be through an increase in the dedicated reserve system to improve that system’s adequacy, supported by complementary state forest informal reserves and values protected by prescriptions. A whole of landscape management planning approach is needed to identify, secure and effectively manage habitat as well as mitigating landscape and other threats, including capacity to respond to emergency events such as severe extensive fire.

This objective relates to the nub of the conservation challenge for Leadbeater’s possum: in a highly dynamic landscape and with some substantial uncertainties, how to define, retain and manage sufficient areas of suitable habitat over periods of many decades to provide for the conservation security for the species. The approach adopted here to address this problem is to maintain or enhance existing protective mechanisms at least until a dynamic land-use planning exercise is implemented that pivots explicitly on the requirement that sufficient habitat is retained and managed to provide a high level (99%) of confidence that the species will persist in nature over at least a 100 year period.

Note that, except where stipulated, all actions contributing to this objective relate to the Central Highlands.

Action 2.1. Enhance existing levels of protection for areas in which colonies are not known but may be present, by undertaking pre-harvest surveys in all coupes prior to proposed timber harvesting. If these surveys detect Leadbeater’s possum, the colonies must be protected from harvesting.

Under the implementation of the Leadbeater’s Possum Advisory Group recommendations, a 2 year timber harvesting moratorium (which commenced April 2014) was placed on areas predicted to have greater than a 65% likelihood of the species occurring (from ARI occupancy modelling), to enable targeted surveys to be undertaken. At the end of 2015, a broader risk-based approach commenced whereby VicForests would undertake pre-logging surveys at coupes considered to have a high probability of the species being present, based on a range of criteria including proximity to existing records. Given (i) that a large proportion of the species’ range occurs in state forests; (ii) much of the species’ total population probably occurs in state forests; (iii) that recent surveys have found previously unknown Leadbeater’s possum colonies in areas proposed for harvesting (Nelson *et al.* 2015), and (iv) the critically endangered status of this species means that all (not just those considered high priority) proposed timber harvesting coupes within ash forest in the Central Highlands should be surveyed before any harvesting activity. No harvesting should be allowed at any site unless comprehensive pre-logging surveys – using guidelines in the Leadbeater’s possum survey standards (Department of Environment Land Water and Planning 2015b) – demonstrate, with a high level of confidence, the absence of Leadbeater’s possum.
Action 2.2. Assess the feasibility, risks and cost-effectiveness of fire management options that seek to deliver long-term, strategic and landscape scale enhancement of the extent and quality of current and prospective suitable habitat. Develop and implement fire management that effectively secures and promotes long-term, strategic and effective protection of known colonies and suitable habitat.

This Action relates to populations across the entire range, including the sub-alpine (snow gum) woodlands and lowland swamp gum forest habitats. It addresses the primary threat to the possum and its habitat. This action will build on the East Central Bushfire Risk Landscape management plan (Department of Environment and Primary Industries 2014d), which encompasses all of the Leadbeater’s possum range. This plan assessed the bushfire risk to known Leadbeater’s possum colonies and high quality habitat, and modelled the extent to which fuel management in adjacent areas reduced this risk.

In implementing this action, management needs to evaluate options relating to short- and long-term planning, local and landscape scales, cost-effectiveness, and risks. It needs to consider pre-emptive fire management actions, responses to bushfires, and post-fire remediation, within the context of the objectives of the Code of Practice for Bushfire Management on Public Land (Department of Sustainability and Environment 2012).

Action 2.3. Enhance existing levels of protection for important habitat features by protecting and buffering all live and dead hollow-bearing trees in montane ash forests within the distribution of Leadbeater’s possum.

Large hollow-bearing trees (dead or alive) are a fundamental defining feature of suitable habitat for Leadbeater’s possum, but are a rapidly declining resource. At present, these are offered some, but not necessarily effective, protection under timber harvesting prescriptions. All large, live and dead hollow-bearing trees in montane ash forests within the distributional range of Leadbeater’s possum should be protected using in-field prescriptions, with adequate buffers of uncleared vegetation around them. A set of tractable, explicit and operational, definitions of large, live and dead hollow-bearing trees need to be determined (based on appropriateness for Leadbeater’s possum and other hollow-dependent fauna), as does the most appropriate size for their protective buffer.

Action 2.4. Review the conservation effectiveness of timber harvesting regulatory prescriptions and related guidelines relevant to the protection of known Leadbeater’s possum colonies and habitat, and refine these prescriptions and guidelines to provide more effective conservation outcomes.

Under existing management processes, all known colonies and high quality habitat in the form of Zone 1A and 1B are currently afforded some protection in state forest through timber harvesting zoning and prescriptions using a detection-based approach to locate these areas. However, the current levels of protection do not provide the maximum possible conservation security for Leadbeater’s possum (Leadbeater’s Possum Advisory Group 2014b). Therefore, all timber harvesting regulatory prescriptions and related guidelines relevant to Leadbeater’s possum and its habitat need to be reviewed, to reduce the impacts of timber harvesting activities on the viability of Leadbeater’s possum colonies and high quality habitat. Such
enhancement should involve increase in the buffer size and other protective mechanisms around known colonies and high-quality habitat.

This Action seeks to ensure state forest continue to play an integral role in the long-term conservation of the species by protecting known colonies. While this review and the landscape scale modelling approach for protecting broader areas of habitat (Action 2.6 and 2.7) are being undertaken, at least the existing levels of protection for all known colonies and high quality habitat should be maintained.

Action 2.5. Refine and update occupancy and other relevant distributional and population viability modelling across the full range of the species (incorporating finer-scale mapping of key habitat attributes, such as large hollow-bearing trees and understorey density).

This is the foundation for a land-use (conservation) planning exercise at a landscape scale (rather than based on the detection of individual colonies or Zone 1 habitat). It will require (i) an updating of spatial habitat models across the full range of the species (including the occupancy model developed in Lumsden et al. (2013) and broader habitat distribution models, to incorporate new information arising from the substantial survey effort since then (e.g. Nelson et al. (2015)); (ii) complementing that modelling with non-spatial habitat modelling developed by Lindenmayer and colleagues; and (iii) testing these models through additional structured surveys.

Following refinement (and testing) of these distributional models, they then need to be linked to population viability and other dynamic modelling, to project, predict and map the distributional extent of suitable habitat under a range of disturbance regimes over at least a 100 year period.

Action 2.6. Based on models developed in Action 2.5, undertake landscape scale land-use planning that provides options for conservation of suitable habitat now and in the future to ensure an acceptably high likelihood of persistence (i.e. at least 99% over 100 year period) for Leadbeater’s possum.

This action will enable a landscape-scale approach to determine appropriate protection, in addition to the location and protection of known Leadbeater’s possum colonies. Given the distributional and viability models developed in Action 2.5, this Action seeks to determine options to achieve the appropriate mix of additional dedicated reserves, informal reserves and values protected through prescriptions in the remaining areas of state forest that will be required to meet the long-term objective of being at least 99% confident that the species will persist in the wild for at least 100 years. That objective should be the numerical target of this planning, but a subsidiary objective is to strategically develop and maintain a substantial increase in the extent of old-growth forest.

Action 2.7. Expand the dedicated reserve system to incorporate sufficient areas of current and prospective suitable habitat to ensure that it is adequate for the long-term conservation of Leadbeater’s possum.

The conservation future of Leadbeater’s possum will depend upon a complementary mix of dedicated reserves, informal reserves and protection of values through prescriptions. However, all else being equal, dedicated reserves are likely to provide greater conservation security and more confidence in conservation outcomes than
unreserved lands that may be subject to timber harvesting with variably effective management prescriptions. Lumsden *et al.* (2013) used projective population modelling to demonstrate that the current reserve system alone is inadequate for the long-term conservation of Leadbeater’s possum, and especially so when incorporating the likelihood of future extensive bushfires. Accordingly, there is scope and need for substantial enhancement of the existing dedicated reserve system, to recognise its primary role in providing for the long-term persistence of the species. Substantial expansion of the current reserve system informed by Actions 2.5 and 2.6 should seek to encompass all areas of high likelihood of occurrence of the species (currently and prospectively). It should also include areas of current and projected old-growth forests; and such expansion should increase the connectivity of the reserve system, as well as protecting a range of other values.

Action 2.8. Assess the practicality and effectiveness of habitat augmentation including the provision of nest boxes, artificially excavated hollows, or manipulation of understorey. Where benefits can be obtained effectively, strategically implement these to enhance the current and projected extent of suitable habitat in the Central Highlands.

This Action relates to all land tenures in the Central Highlands and is based on the premise that the current and projected extent and quality of suitable habitat is a major limiting factor, and that active management may be able to support the persistence of colonies where den sites are declining and provide some increase in the extent of suitable habitat.

Note that this Action links also to research Action 5.3, that seeks to assess the benefit, practicality and cost-effectiveness of such habitat augmentation measures.

Action 2.9. Enhance habitat suitability and extent for lowland swamp forest habitat.

Currently, there is a lack of eucalypt regeneration in the floodplain at Yellingbo, and habitat management and restoration is required to increase the amount of structurally dense forest to provide additional foraging habitat and connectivity. This includes hydrological restoration in the floodplains of the Cockatoo and Macclesfield Creeks and the development and application of a disturbance regime to promote the regeneration of dense stands of canopy and middle-storey species on the floodplain and terraces immediately adjacent to the floodplain. Until appropriate broad-scale disturbance mechanisms are developed, manual revegetation should be undertaken in priority sites, notably those currently supporting Leadbeater’s possum colonies, at Yellingbo (and in similar suitable sites in the vicinity). The long-term target is to provide at least 80 hectares of suitable foraging habitat for Leadbeater’s possum in the reserve, and hence to reverse the current decline of the subpopulation in lowland swamp forest.
Performance criteria:

1. Timber harvesting occurs only in sites known not to contain Leadbeater’s possum.

2. Options for fire management are better evaluated for impacts on Leadbeater’s possum, and fire management policy, planning and actions are implemented in a manner that minimises risks to the viability of Leadbeater’s possum, and reduces the likelihood of extensive and severe bushfires.

3. All large, live and dead hollow-bearing trees are adequately protected from timber harvesting.

4. Timber harvesting prescriptions and guidelines are reviewed and refined appropriately to provide more effective protection for high quality habitat and known colonies.

5. An enhanced spatial distribution model, and a spatially-explicit population viability model, are developed and form a robust basis for current and future conservation planning.

6. Areas that can provide suitable habitat now, and over the next 50 years are modelled, mapped, and excluded from timber harvesting.

7. Sufficient additional areas of current and prospective suitable habitat are incorporated in an expanded dedicated and informal reserve system to ensure that the system maximises the likelihood of persistence of Leadbeater’s possum, over at least a 100-year period.

8. The effectiveness of nest boxes, artificially excavated hollows and manipulation of understory is understood and these management actions are implemented where appropriate.

9. Active habitat management and restoration at Yellingbo (and similar nearby areas) provides increased habitat extent and suitability.

Deliverables

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>By end of 1st year of this Plan</td>
<td>Guidelines and regulatory processes are established to ensure that adequate surveys are undertaken in all areas of ash forest within the range of the species prior to timber harvesting so that harvesting only occurs in sites known not to support Leadbeater’s possum (Action 2.1). The risks, consequences and effectiveness for Leadbeater’s possum viability of fire management options are evaluated (Action 2.2). New prescriptions are developed to ensure that all large, live and dead hollow-bearing trees are effectively protected from timber harvesting operations (Action 2.3). Existing timber harvesting prescriptions and guidelines are reviewed and resulting changes are implemented through changes to guidelines and regulatory processes (Action 2.4). Improved distributional models are developed that combine distribution and habitat models developed by Victorian government</td>
</tr>
</tbody>
</table>

68
and ANU researchers, and incorporates substantial new data from recent surveys and mapping of additional habitat features (*Action 2.5*).

By end of 2nd year of this Plan

A long-term strategic fire management plan for the Central Highlands is developed or refined that identifies key risks, key biodiversity assets for protection, effective management to reduce likelihood of extensive high intensity fire, effective responses to asset protection during high intensity fire, and effective emergency recovery post-fire (*Action 2.2*).

Dynamic population viability modelling is refined such that likelihood of extinction can be calculated robustly across a range of reservation and management options, and across a range of plausible future disturbance episodes. This modelling is then linked to distributional modelling to identify reservation and management scenarios that provide an acceptably low risk of extinction (<1% probability) over a 100-year period (*Action 2.5*).

The reserve system is expanded consistent with distribution and population viability models, and land-use planning to a level that provides confidence that long-term risks of extinction are acceptably low (*Action 2.6 and 2.7*).

Based on evidence from research (i) the effectiveness of habitat augmentation measures is assessed, (ii) sites are identified where augmentation can contribute most significantly to the long-term persistence of Leadbeater’s possum, and (iii) a long-term strategic program of habitat augmentation is implemented, such that this contributes most effectively to persistence (*Action 2.8*).

By end of 5th year of this Plan

Active restoration and related activities provide the basis for long-term increase in the extent of suitable habitat for Leadbeater’s possum in the Yellingbo reserve and similar nearby areas (*Action 2.9*).

By end of 10th year of this Plan

Enhanced reservation and effective management of adequate areas of unreserved habitat provides an acceptably low risk of extinction (e.g. <1% probability) over a 100-year period (*Multiple actions*).

Objective 3: Where there is net long-term benefit (i.e. likelihood of increase in overall population viability), translocate individuals or colonies *within* and adjacent to the known range.

Rationale: The distribution of Leadbeater’s possum is fragmented, and probably increasingly so. Some small isolated subpopulations are likely to have especially low viability. There is probably little effective natural dispersal of individuals of this species over distances of more than 10 km. In addition, because of past events, some currently suitable habitat may now be unoccupied, or areas will become suitable in the near future (e.g. parts of the area burnt in the 2009 fires). Strategic translocations within the known range may decrease population fragmentation, and increase subpopulation viability and occupancy of suitable habitat. It is prudent to carefully trial such translocations early in the plan, given the likelihood of greater...
need for such actions in the future as the population size declines and becomes increasingly fragmented.

Action 3.1. Identify priority areas within and adjacent to the known range to which translocations may provide benefit to the possum’s population viability. Assess the risks, potential impacts upon existing subpopulations, benefits, likelihood of success, and cost-effectiveness of translocation options. Develop appropriate protocols for use and implementation of translocation (most likely ‘wild-to-wild’ introductions).

Action 3.2. Assess the risks, benefits, practicality, cost-effectiveness and consequences of ‘gene pool mixing’ to increase the viability of the lowland sub-population.

Action 3.3. Where Actions 3.1 and 3.2 indicate likelihood of net benefit, undertake carefully monitored trial translocations, and – if successful – extend translocations to other priority areas.

Performance criteria:

1. Assessment is completed that identifies where translocation may be valuable within the known range, and evaluates risks, costs, and benefits of translocation options.

2. Translocation protocols are developed and trialled.

3. ‘New’ colonies or subpopulations within the known range are established through translocation.

Deliverables

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>By end of 1st year of this Plan</td>
<td>Protocols and guidelines (that describe the feasibility, risk assessments, evaluation of costs and benefits, and recommended procedures) for translocation are developed (Action 3.1).</td>
</tr>
</tbody>
</table>
| By end of 2nd year of this Plan | Where net benefit is expected, priority sites for translocation within and adjacent to the Central Highlands are identified (Action 3.1).
The use of gene pool mixing as a management option for the lowland population is carefully evaluated (with consideration of risks, costs and benefits, and with appropriate community consultation); and explicit guidelines are established for if, when and how it should be used to contribute to enhancement of the long-term viability of the lowland population (Action 3.2). |
| By end of 5th year of this Plan | Where net benefit is expected, at least three trial translocation projects are undertaken (Action 3.3). |
| By end of 10th year of this Plan | Translocated populations are effectively established and contribute significantly to overall long-term population viability (Action 3.3). |
Objective 4: Seek to locate, or establish, additional populations outside the core range of the Central Highlands.

Rationale: The conservation future of Leadbeater’s possum within its known range in the Central Highlands is precarious. Its overall conservation outlook is likely to be improved by seeking to spread extinction risks by establishing additional populations outside this known range, while the current population size may still allow for such translocation.

Action 4.1. Using recently developed survey approaches, survey potentially suitable areas (in Victoria) – including the areas predicted by habitat modelling to provide suitable habitat and/or where there are previous unverified records – outside the known range.

Action 4.2. If such surveys locate ‘new’ existing populations (beyond the Central Highlands), assess their status, population size, genetic affinities, habitat relationships, extent of suitable and prospective habitat and management requirements; and implement such management.

Action 4.3. If such surveys fail to locate existing populations, identify the most suitable candidate areas for translocation.

Action 4.4. Assess the welfare risks, likelihood of success, cost-effectiveness, and potential impacts upon existing populations of translocations to those areas outside the current range considered most practical and likely to result in the establishment of new viable subpopulations. If considered to have significant benefits, implement such translocations.

Note that this Action links to Actions 3.1 and 3.3. Any translocation should be consistent with relevant legislation and IUCN guidelines, and consistent with trial translocation protocols developed under Action 3.1 above.

Performance criteria:

1. Areas of highest prospectivity for Leadbeater’s possum outside the Central Highlands are identified and surveyed with appropriate methods.

2. Assessment of the likely benefits, risks and feasibility of translocation to new areas assists with decision-making processes.

3. ‘New’ subpopulations are established through translocation to suitable habitat.

Deliverables

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>By end of 1st year of this Plan</td>
<td>At least 10 priority areas considered most likely to contain populations of Leadbeater’s possum outside the current known range are identified, and surveyed adequately using appropriate protocols (Action 4.1).</td>
</tr>
<tr>
<td>By end of 2nd year of this Plan</td>
<td>A further 10+ priority areas considered most likely to harbour populations of Leadbeater’s possum outside the current known range are identified, and surveyed adequately using appropriate protocols (Action 4.1).</td>
</tr>
</tbody>
</table>
If Action 4.1 results in location of new populations outside known range the status (including abundance, habitat requirements, range extent, threats) is assessed, and appropriate conservation management responses are developed and implemented (Action 4.2).

If Action 4.1 fails to locate new populations outside known range, using habitat suitability modelling, preliminary survey and risk spreading principles, at least five sites (outside the current known range) with highest potential for translocation are identified; and translocations options for these sites are assessed. (Action 4.3).

<table>
<thead>
<tr>
<th>By end of 5th year of this Plan</th>
<th>At least three trial translocation projects are undertaken (Action 4.4).</th>
</tr>
</thead>
<tbody>
<tr>
<td>By end of 10th year of this Plan</td>
<td>Translocated populations are effectively established, and contribute significantly to overall long-term population viability (Action 4.4).</td>
</tr>
</tbody>
</table>

Objective 5: Targeted research addresses key knowledge gaps such that management options are better informed and management actions more effective.

Rationale: Notwithstanding several decades of intensive research, there remain some key knowledge gaps that constrain conservation management effectiveness. In some cases, where that research closely relates to other management objectives, the research actions are described within those objectives (e.g. Actions 2.2, 2.5, 2.8, 3.1, 3.2, and 4.1). Note that the actions described here should not be seen to limit research options. Other currently established or proposed research actions will also contribute to the objectives of this Plan.

Action 5.1. Establish an ongoing research forum to enhance existing collaboration among researchers, and between researchers, managers and other interested parties, to make the most effective use of research actions and to identify and address any further key knowledge gaps.

Action 5.2. Undertake research that provides more robust knowledge of key demographic and other ecological characteristics relevant to conservation management, specifically including dispersal characteristics and population size.

Action 5.3. Investigate key aspects of the post-fire ecology of Leadbeater’s possum. This research should include at least: (i) assessing current hollow availability and the importance of large dead and any live hollow-bearing trees in the burnt landscape; (ii) investigating hollow development within trees that were 1939 regrowth before being burnt to determine their potential to provide nesting sites into the future; and (iii) investigate persistence of colonies within fire refuges surrounded by burnt areas, to determine if they will be effective sources for natural recolonisation or if translocations will be required to accelerate recolonisation of the regenerated burnt areas.

Action 5.4. Design and implement experimental trials that rigorously assess the relative benefits of prescriptions, actions and other management options, in a manner that allows results to inform ongoing refinement of those prescriptions and actions and the Plan itself.
Performance criteria:

1. Critical knowledge gaps are identified and filled, and management applies this knowledge and is demonstrably more effective.

Deliverables

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>By end of 1st year of this Plan</td>
<td>A regular research forum is established for all key researchers and stakeholders to (i) help coordinate research; (ii) identify key knowledge gaps; (iii) effectively disseminate new information from research; (iv) guide effective uptake of knowledge to management; and (v) help resolve contested research findings or implications (Action 5.1).</td>
</tr>
<tr>
<td>By end of 2nd year of this Plan</td>
<td>The status of subpopulations within fire refuges has been assessed to determine their short-term persistence prior to the surrounding areas becoming suitable habitat (Action 5.3).</td>
</tr>
<tr>
<td>By end of 5th year of this Plan</td>
<td>The size of the total population and individual subpopulations is reliably estimated, and used with population viability analysis to help guide management responses (Action 5.2). Using an adaptive management framework, the effectiveness of key actions within this plan has been experimentally tested and the actions revised where appropriate (Action 5.4).</td>
</tr>
<tr>
<td>By end of 10th year of this Plan</td>
<td>The status of subpopulations within fire refuges has been assessed to investigate longer term persistence and the extent to which animals have recolonised the surrounding regenerating forest (Action 5.3).</td>
</tr>
</tbody>
</table>

Objective 6: An integrated monitoring program is effectively implemented (and maintained) that publicly reports in a timely manner on possum status, existing and prospective habitat extent, quality and connectivity, and effectiveness of management actions.

Action 6.1. Collate existing monitoring data and programs (for population trajectories, extent and suitability of habitat, and management effectiveness). Maintain, enhance or develop new monitoring programs to ensure an integrated monitoring and survey program across all tenures and management zones and develop an effective public reporting of monitoring results.

Action 6.2. Identify key trigger points or thresholds in monitoring results that would catalyse priority emergency response (and identify such emergency response options).

Action 6.3. Where translocations are proposed (see Actions 3.3 and 4.4 above), design translocation trials in a manner that allows for reporting on success or failure, and those factors that contribute to this fate. Monitor those trials, and use results to refine the efficacy of translocation protocols, or to assess critically whether they are of net benefit.
Action 6.4. Monitor the extent of success (including cost-effectiveness and collateral benefits) of management actions individually and collectively, and use such information as appropriate to refine actions.

Performance criteria

1. An integrated monitoring program reports effectively, regularly and publicly on key measures, including relative abundance population trends, extent of suitable habitat, and management effectiveness.

2. Management actions are reviewed in response to evidence from monitoring, and revised accordingly.

Deliverables

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>By end of 1st year of this Plan</td>
<td>An integrated monitoring program is developed (based on coordination or complementarity of existing, enhanced and new monitoring components), with such program including (i) timely public reporting on trends in possum abundance, key habitat features (e.g. extent of old-growth forest, abundance of large hollow-bearing trees) and extent of success of management actions, (ii) explicit trigger points for defined emergency responses; and (iii) secure commitment over at least the lifetime of this Plan (Actions 6.1, 6.2) A process is developed and implemented (e.g. a website) to regularly provide updates to the public on progress of implementing the actions in this Recovery Plan (Action 6.1)</td>
</tr>
<tr>
<td>By end of 2nd year of this Plan</td>
<td>Integrated monitoring program implemented, with appropriate and timely public reporting on trends in possum abundance, key habitat features and extent of success of management actions (ongoing) (Actions 6.1, 6.2, 6.4). Design completed for experimental translocation and associated monitoring options (Action 6.3).</td>
</tr>
<tr>
<td>By end of 5th year of this Plan</td>
<td>Monitoring associated with experimental translocation is implemented with appropriate and timely public reporting on success or failure (Action 6.3). Translocation trials are reviewed for effectiveness (Action 6.3).</td>
</tr>
<tr>
<td>By end of 10th year of this Plan</td>
<td>The package of actions presented in this plan is evaluated collectively to determine their overall effectiveness (Action 6.4).</td>
</tr>
</tbody>
</table>

Objective 7: All stakeholders support and where relevant are involved in the implementation of the Plan.

Action 7.1. Establish (or build from existing mechanisms) and maintain an effective recovery team or similar governance model to oversee implementation of the Recovery Plan, and ensure effective and timely operation of such a team.
Action 7.2. Involve the community in Leadbeater’s possum recovery.

Action 7.3. Provide enhanced opportunities for the participation of Indigenous groups in research, monitoring, management and other components of this Plan.

Action 7.4. Promote and publicise the Recovery Plan and recovery effort.

Performance criteria:

1. Effective governance is established and there is clarity around roles and responsibilities.

2. Community awareness of, support for, and participation in Leadbeater’s possum recovery is increased.

3. Indigenous groups have the opportunity to play a substantial role in the implementation and oversight of conservation management for Leadbeater’s possum.

4. Public information and education materials and programs are developed and implemented, to the satisfaction of all relevant interest groups.

Deliverables

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| By end of 1st year of this Plan | Key stakeholders identify and implement the most effective ongoing governance operation of this plan (Action 7.1). Indigenous groups scope their involvement in implementation of this plan (Action 7.3).
 Multiple actions. A stakeholder forum is established to support community engagement in the plan’s implementation; particularly to (i) identify, establish and coordinate engagement opportunities; (ii) coordinate and disseminate information more broadly; (iii) monitor and measure success of engagement action; (iv) establish on-going reporting to governance model established (under Action 7.1) |
| By end of 2nd year of this Plan | The implementation of this plan appropriately involves Indigenous groups in a manner and to the extent sought by them (Action 7.3). |
| By end of 5th year of this Plan | A stakeholder forum reviews, quantifies and evaluates the extent to which community awareness of, support for, and participation in Leadbeater’s possum recovery has increased. This will inform the 5 year Recovery Plan review (Action 8.4) (*Multiple actions.*) |
| By end of 10th year of this Plan | |

Objective 8: Ensure effective and adaptive implementation and management oversight of the Plan including adequate resourcing.

Action 8.1. All partners in the Plan coordinate and adequately resource implementation to achieve objectives through adaptive management and cost-effective delivery.
Action 8.2. Establish appropriate governance and protocols to be able to respond to emergency events.

Action 8.3. Monitor the extent of implementation of management actions.

Action 8.4. Report regularly on performance effectiveness of this Recovery Plan, including a formal review at 5 years, and adapt as required.

Performance criteria:

1. The plan’s progress and success is regularly assessed and reported, explicitly including a five-year review of the Recovery Plan.

2. Resources are adequate to implement the Plan.

3. Managers, researchers and others respond capably and in a timely manner to unforeseen events.

Deliverables

<table>
<thead>
<tr>
<th>Timing</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>By end of 1(^{st}) year of this Plan</td>
<td>Resourcing secured for Plan implementation (Action 8.1).</td>
</tr>
<tr>
<td>By end of 2(^{nd}) year of this Plan</td>
<td></td>
</tr>
<tr>
<td>By end of 5(^{th}) year of this Plan</td>
<td>Comprehensive interim review completed of the implementation and success of this Recovery Plan, with recommendations for adaptive changes (Action 8.4).</td>
</tr>
<tr>
<td>By end of 10(^{th}) year of this Plan</td>
<td>Comprehensive review completed of the implementation and success of this Recovery Plan, with this review informing the development and implementation of a new Plan (Action 8.4).</td>
</tr>
</tbody>
</table>

8. PLAN IMPLEMENTATION

8.1. Implementation schedule and costs

Implementation of this Plan will require commitment and effective coordination and collaboration between key stakeholders and partners. A recovery team or similar governance model (Actions 7.1 and 8.1) will be the key mechanism to facilitate recovery coordination and identify funding opportunities. Implementation partners are identified for each action (Table 4) and broadly include government agencies with statutory responsibilities to protect and manage Leadbeater’s possum and its habitat, zoos, forest-based industry groups, community organisations, Indigenous communities and research institutions.

Implementation partners will ensure that any risks associated with implementing actions are identified and managed, and that adaptive management underpins all actions. Adaptive management and prioritisation decisions will be made by the responsible organisations, in consultation with key partners and the recovery team to ensure any changes are consistent
with and progress the Recovery Plan objectives. It is the responsibility of organisations implementing actions to report on implementation through the proposed governance and reporting structure.

Implementing this Plan is subject to budgetary and other resource constraints affecting the key stakeholders. The cost of implementing this Plan should where possible be incorporated into the core business expenditure of the affected organisations and through additional funds obtained for the explicit purpose of implementing this Recovery Plan. Some actions, or parts of actions, are being implemented through other Leadbeater’s possum conservation efforts (see Section 6.1). Additional investment in this Recovery Plan will augment these and ensure coordination of effort to meet plan objectives. Other proposed actions are new and funding opportunities are yet to be secured. It is expected that the responsible Victorian and Commonwealth agencies will use this plan to collaborate in prioritising action and investment to protect Leadbeater’s possum and enhance its recovery.

The implementation costs in Table 4 are indicative only and are based on estimates from comparable actions undertaken or underway as part of the ongoing Leadbeater’s possum conservation effort. Costs also draw upon the relative indicative costs identified by the Leadbeater’s Possum Advisory Group (2014a). It is not practical at this point to provide meaningful costing figures for actions beyond year five. Significant investment in actions, particularly in the first three years is required to establish the foundation for ongoing conservation effort and will provide more realistic indications of ongoing implementation costs. Indicative costs for actions beyond the fifth year will therefore be developed as these initial actions are implemented and will inform the five year review.

Once the Recovery Plan is in place, a detailed implementation plan is to be negotiated by implementation partners through which agreement is reached on partner contributions to the implementation of actions. Annual and where possible ongoing budgets should be identified, coordinated and secured by the implementation partners with timing and reporting processes consistent with the proposed timeframes and the priorities identified in Table 4. This implementation plan will identify and commit responsible partners to agreed actions and be facilitated by the recovery team or other governance model. Because actions are to be implemented adaptively, priority, timing and cost estimates may change during implementation.

Priorities:
All proposed actions will collectively contribute to the ongoing recovery needs of Leadbeater’s possum and all individual actions are considered priorities for implementation. However, the extent of implementation will be subject to budgetary and other resource constraints. To guide implementation decisions and adaptive responses to any such resource constraints, actions are assigned priorities:

- **urgent** – the conservation future of the species depends upon this action being implemented;
- **essential** – the conservation future of the species will be jeopardised if this action is not implemented;
- **highly beneficial** – this action will contribute to the conservation future of this species.
Table 4: Indicative time frames, priorities and estimated costs ($000's) of recovery actions over the first five years of implementation.

<table>
<thead>
<tr>
<th>Actions</th>
<th>Priority</th>
<th>Implementation partners</th>
<th>Indicative cost and timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Review and, where required, revise existing planning and policy settings</td>
<td>Urgent</td>
<td>DELWP, AG</td>
<td>$700 $700 $200 $1600</td>
</tr>
<tr>
<td>1.2 Ensure that future relevant planning and policy settings maximise the chances of long-term survival</td>
<td>Urgent</td>
<td>DELWP, AG</td>
<td>$50 $50 $50 $50 $50 $250</td>
</tr>
<tr>
<td>1.3 Ensure coordination between relevant planning and policy settings</td>
<td>Essential</td>
<td>DELWP, AG</td>
<td>$20 $20 $20 $20 $20 $100</td>
</tr>
<tr>
<td>2.1 Enhance protection for colonies by undertaking surveys in all coupes prior to timber harvesting.</td>
<td>Urgent</td>
<td>DELWP, VF</td>
<td>$1000 $1000 $1000 $1000 $1000 $5000</td>
</tr>
<tr>
<td>2.2 Assess the feasibility, risks and cost-effectiveness of fire management options and implement fire management to protect known colonies and suitable habitat</td>
<td>Urgent</td>
<td>DELWP, VF, PV</td>
<td>$200 $200 $50 $50 $50 $550</td>
</tr>
<tr>
<td>2.3 Enhance existing level of protection for hollow-bearing trees</td>
<td>Urgent</td>
<td>DELWP, VF</td>
<td>$400 $400</td>
</tr>
<tr>
<td>2.4 Review timber harvesting regulatory prescriptions and guidelines, and refine these to provide more effective conservation outcomes</td>
<td>Urgent</td>
<td>DELWP</td>
<td>$50 $50 $50 $50 $50 $150</td>
</tr>
<tr>
<td>2.5 Refine and update occupancy and other relevant distributional and population viability models</td>
<td>Urgent</td>
<td>DELWP, Uni</td>
<td>$700 $700 $700 $700 $700 $1400</td>
</tr>
<tr>
<td>2.6 Undertake landscape scale land-use planning that provides options for conservation of suitable habitat</td>
<td>Urgent</td>
<td>DELWP, AG</td>
<td>$50 $50 $50 $100 $100 $200</td>
</tr>
<tr>
<td>2.7 Expand the dedicated reserve system to incorporate sufficient areas of current and prospective suitable habitat</td>
<td>Urgent</td>
<td>DELWP, AG, PV,</td>
<td>TBD TBD TBD $100</td>
</tr>
<tr>
<td>2.8 Assess the practicality and effectiveness of habitat augmentation (nest boxes, artificially excavated hollows, manipulation of understorey), and strategically implement</td>
<td>Urgent</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$300 $300 $300 $300 $300 $900</td>
</tr>
<tr>
<td>2.9 Enhance habitat suitability and extent for lowland swamp forest habitat</td>
<td>Essential</td>
<td>DELWP, AG, PV, Zoos, CC</td>
<td>2000 1100 100 100 100 $3400</td>
</tr>
<tr>
<td>Actions”</td>
<td>Priority</td>
<td>Implementation partners</td>
<td>Indicative cost and timing</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 1</td>
</tr>
<tr>
<td>3.1 Identify priority areas within and adjacent to the known range to which translocations may provide benefit and develop translocation protocols</td>
<td>Highly beneficial</td>
<td>DELWP, PV, Zoos</td>
<td>$100</td>
</tr>
<tr>
<td>3.2 Assess the risks, benefits, practicality, cost-effectiveness and consequences of ‘gene pool mixing’ to increase the viability of the lowland subpopulation</td>
<td>Highly beneficial</td>
<td>DELWP, Uni, PV, Zoos</td>
<td></td>
</tr>
<tr>
<td>3.3 Where likely benefit, undertake carefully monitored trial translocations</td>
<td>Highly beneficial</td>
<td>DELWP, PV, Zoos</td>
<td>$1000</td>
</tr>
<tr>
<td>4.1 Using recently developed survey approaches, survey potentially suitable areas outside the known range</td>
<td>Essential</td>
<td>DELWP, PV, Zoos</td>
<td>$1000</td>
</tr>
<tr>
<td>4.2 If such surveys locate ‘new’ populations, assess their status and management requirements and implement management</td>
<td>Essential</td>
<td>DELWP, Uni, PV, Zoos</td>
<td></td>
</tr>
<tr>
<td>4.3 If such surveys fail to locate existing populations, identify the most suitable candidate areas for translocation</td>
<td>Highly beneficial</td>
<td>DELWP, Uni, PV, Zoos</td>
<td></td>
</tr>
<tr>
<td>4.4 If significant benefits, implement translocations to areas considered most likely to result in the establishment of new viable subpopulations</td>
<td>Highly beneficial</td>
<td>DELWP, Uni, PV, Zoos</td>
<td>$1000</td>
</tr>
<tr>
<td>5.1 Establish an ongoing research forum</td>
<td>Urgent</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$10</td>
</tr>
<tr>
<td>5.2 Undertake research that provides more robust knowledge of key demographic and other ecological characteristics</td>
<td>Essential</td>
<td>DELWP, Uni, Zoos</td>
<td></td>
</tr>
<tr>
<td>5.3 Investigate key aspects of the post-fire ecology of Leadbeater’s possum</td>
<td>Essential</td>
<td>DELWP, Uni, PV, Zoos</td>
<td>$200</td>
</tr>
<tr>
<td>5.4 Design and implement experimental trials that rigorously assess the relative benefits of management options</td>
<td>Essential</td>
<td>DELWP, Uni, VF, PV, Zoos</td>
<td>$500</td>
</tr>
<tr>
<td>Actions*</td>
<td>Priority</td>
<td>Implementation partners</td>
<td>Indicative cost and timing</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 1</td>
</tr>
<tr>
<td>6.1 Collate existing monitoring data and maintain, enhance or develop new monitoring programs</td>
<td>Urgent</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$100</td>
</tr>
<tr>
<td>6.2 Identify key trigger points or thresholds in monitoring results that would catalyse priority emergency response</td>
<td>Essential</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$10</td>
</tr>
<tr>
<td>6.3 Where translocations are proposed, design translocation trials in a manner that allows for reporting on success or failure</td>
<td>Highly beneficial</td>
<td>DELWP, Uni, Zoos, PV</td>
<td>$20</td>
</tr>
<tr>
<td>6.4 Monitor the extent of success of management actions individually and collectively</td>
<td>Essential</td>
<td>DELWP, AG, Uni, VF, PV</td>
<td>$100</td>
</tr>
<tr>
<td>7.1 Establish and maintain an effective recovery team or similar governance model</td>
<td>Urgent</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$10</td>
</tr>
<tr>
<td>7.2 Involve the community in Leadbeater's possum recovery</td>
<td>Essential</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$50</td>
</tr>
<tr>
<td>7.3 Provide enhanced opportunities for the participation of Indigenous groups in research, monitoring and management</td>
<td>Highly beneficial</td>
<td>DELWP, CC</td>
<td>TBD</td>
</tr>
<tr>
<td>7.4 Promote and publicise the Recovery Plan and recovery effort</td>
<td>Highly beneficial</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$20</td>
</tr>
<tr>
<td>8.1 All partners in the Plan coordinate and adequately resource implementation</td>
<td>Essential</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$20</td>
</tr>
<tr>
<td>8.2 Establish appropriate governance and protocols to be able to respond to emergency events</td>
<td>Highly beneficial</td>
<td>DELWP, AG, Uni, VF, PV, Zoos, CC</td>
<td>$20</td>
</tr>
<tr>
<td>8.3 Monitor the extent of implementation of management actions</td>
<td>Essential</td>
<td>DELWP, AG</td>
<td>$20</td>
</tr>
<tr>
<td>8.4 Report regularly on performance effectiveness of this Plan, including a formal review at 5 years</td>
<td>Essential</td>
<td>DELWP, AG</td>
<td>$20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$7580</td>
</tr>
</tbody>
</table>
8.2. Monitoring, evaluation and adaptation of the Recovery Plan

8.2.1. Monitoring and review

Monitoring of the plan itself will require ongoing assessment of the implementation and success of all actions, with regular reporting to the recovery team or other coordinating group.

A mid-term review (5 years) of the plan will be conducted using a ‘Measure of Success’ for every action and assessment of progress towards every objective and deliverable. This review will be used to help inform the need for any adaptation required within the plan, to identify and resolve any unexpected impediments, and to re-assess priorities for actions.

The review will be coordinated by relevant Australian and state government agencies, with input sought from key stakeholder groups such as non-governmental organisations, local community groups and research organisations. As per s.279(2) of the Environment Protection and Biodiversity Conservation Act, this 5-year assessment of progress will be reviewed by the Australian Minister for the Environment.

A comprehensive review of the implementation and success of the plan will be undertaken in Year 10 of the Plan as a foundation for the development of a revised 10-year plan. This review will consider, inter alia, trends in the status of the species and its habitat, effectiveness of actions described in this plan, new research findings and emerging issues, policy context, management capability and resourcing, and stakeholder satisfaction with governance and other matters.

8.2.2. Variation and adaptation

This plan recognises a need for some flexibility and adaptation, due to some substantial uncertainties in knowledge of aspects of the species’ biology, and about the likelihood of success of some management actions, as well as the likelihood of somewhat unpredictable episodes of acute and severe threat. The 2009 bushfires had a severe impact on the conservation outlook for Leadbeater’s possum. Should a comparable extensive bushfire occur over the life of this plan, there may be need for rapid responses in the conservation management of this species. Such response may include adaptation within this Recovery Plan, to re-prioritise some actions, or to establish new actions. Adaptation within the plan should be guided by the regular reporting described above, and should generally fit within the broad framework described in this plan. Any such needed adaptation in this plan should be overseen by the recovery team or other coordinating group.

If there is need to vary the plan beyond its current framework, such variation will require the approval of the Minister, informed by advice from the Threatened Species Scientific Committee (Environment Protection and Biodiversity Conservation Act s.279(3,5)).

8.3. Potential benefits and impacts associated with implementation

8.3.1. Broader biodiversity benefits

Actions taken for the recovery of Leadbeater’s possum are likely to provide substantial benefits to many other native species and to the ecological communities with which it is associated – montane ash forests, snow gum woodlands and lowland swamp forests.
Management actions, plans and policies that seek to reduce the decline in (and eventually increase) the abundance of hollow-bearing trees across the range of Leadbeater’s possum are likely to provide benefits to many other hollow-nesting species, including other possums, gliders, bats, owls, parrots, cockatoos, treecreepers, owlet-nightjars and kookaburras, for which available hollows may be limiting.

Management actions, plans and policies that seek to reduce the incidence of extensive, high intensity bushfires in montane ash forests, and other habitats used by Leadbeater’s possum, will benefit many species that are associated with older-aged forest stands and/or are likely to suffer substantial mortality due to severe fire and its associated factors (e.g. increased predation impacts post-fire). Examples include superb lyrebird *Menura novaehollandiae*, Bassian thrush *Zoothera lunulata*, sooty owl, yellow-bellied glider *Petaurus australis* and southern greater glider (Loy 1985; Macfarlane 1988; Milledge et al. 1991). Two threatened plants (the shiny nematolepis *Nematolepis wilsonii* and the tall astelia *Astelia australiana*), largely endemic to the Leadbeater’s possum Central Highlands range, are highly likely to benefit from improved and strategic management responses to high intensity bushfire.

Enhanced fire management for Leadbeater’s possum habitat may also lead to some broader-scale (regional) improved fire regimes for other habitats (i.e. those not used by Leadbeater’s possum) within and adjacent to the Leadbeater’s possum range. The conservation of some threatened aquatic species, such as the barred galaxias *Galaxias fuscus* and the Baw Baw frog *Philoria frosti*, largely restricted to habitat within the range of Leadbeater’s possum, will benefit from improved fire management responses within their supporting catchments.

Management actions, plans and policies that seek to increase the extent and connectivity of the conservation reserve estate in montane ash forests for Leadbeater’s possum will also provide benefit to other species that may be disadvantaged by timber harvesting or other disturbance activities that may occur outside but not within reserves. Examples of such species that may benefit from an enhanced reserve system supported by enhanced forest management prescriptions include southern greater glider, tall astelia, shiny nematolepis, and barred galaxias.

Management actions, plans and policies that seek to restore the extent, quality and connectivity of lowland swamp forest habitat for Leadbeater’s possum will also provide benefit to other species that are associated with this habitat, notably the Critically Endangered helmeted honeyeater, which is now largely restricted to the Yellingbo Nature Conservation Reserve. Such actions will also benefit the habitat itself, including the threatened ‘Sedge-rich *Eucalyptus camphora* Swamp Community’.

Research actions (including survey, monitoring, fine-scale mapping of habitat features and distributional modelling) for Leadbeater’s possum are likely to provide increased information on the distribution of other co-occurring species, particularly other possums and gliders. A broad suite of arboreal mammals are monitored concurrently with Leadbeater’s possum in ANU’s long-standing monitoring program (Lindenmayer et al. 1991c; Lindenmayer et al. 1994b; Lindenmayer et al. 2003; Lindenmayer et al. 2011b; Lindenmayer et al. 2013c; Lindenmayer et al. 2014b) and recorded during DELWP’s targeted surveys, and such information will help assess population trends for these species. Identifying areas of suitable habitat for other species will benefit from the mapping of Leadbeater’s possum habitat features, such as large old trees.

Enhanced reservation and fire management across the core Leadbeater’s possum range is likely to benefit the mountain ash forest ecological community generally, for which a recent
assessment using IUCN criteria concluded that its conservation status was critically endangered (Burns et al. 2015).

The plan seeks to reduce the incidence of extensive fire, increase the area of montane ash forest in reserves and increase the extent of older-aged ash forest (and older-aged trees). Such outcomes would provide benefits for abatement of greenhouse gas emissions, especially given the very high reported carbon storage in older-aged ash forest (Keith et al. 2009; Keith et al. 2014a; Keith et al. 2014b). In turn, such reduction in greenhouse gas emissions would contribute to global climate change mitigation, and hence provide benefits to biodiversity far more broadly.

It is unlikely that there will be significant detriment to other native species arising from the implementation of this plan. Some plant and animal species associated with drier forests adjacent to known Leadbeater’s possum colonies or habitat may be disadvantaged if such habitat is used extensively for pre-emptive management to reduce the likelihood of bushfire in Leadbeater’s possum habitat. Some disturbance-favoured species (e.g. bush rat Rattus fuscipes, swamp wallaby Wallabia bicolor, agile antechinus Antechinus agilis, superb fairy-wren Malurus cyaneus, flame robin Petroica phoenicea, Australian magpie Gymnorhina tibicen: Loyn (1985); Macfarlane (1988)), may be disadvantaged by the enhanced fire management sought in this plan, but these are generally widespread and non-threatened species and any such detriment is likely to be minor relative to the benefits of this plan for threatened and other species.

Importantly, implementation of this plan will necessitate consideration of conservation and management needs of other threatened species, in particular those identified in Table 5 and for which approved conservation plans are in place, to ensure complementarity of actions. Engagement with these other recovery programs should seek to not only resolve any potential conflicts, particularly as they relate to fire management, but also to identify and realise opportunities for collaboration and any appropriate joint management responses. Examples of this are already occurring through habitat restoration projects at Yellingbo to benefit both the Leadbeater’s possum and the helmeted honeyeater.

Table 5. Listed threatened species and ecological communities that occur in areas likely to be affected by this plan.

<table>
<thead>
<tr>
<th>Threatened species or ecological community</th>
<th>EPBC Act status</th>
<th>Victorian FFA Act status (advisory list status)</th>
<th>Conservation plan</th>
<th>Likely impact of this plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall astelia Astelia australiana</td>
<td>Vulnerable</td>
<td>Threatened (Vulnerable)</td>
<td>Recovery Plan; Action Statement</td>
<td>Consideration of and improved responses to risk of frequent large fires; protection of habitat; improved forest management prescriptions.</td>
</tr>
<tr>
<td>Shiny nematelepis Nematolepis wilsonii</td>
<td>Vulnerable</td>
<td>Threatened (Vulnerable)</td>
<td>Recovery Plan; Action Statement</td>
<td>Protection of habitat; improved consideration of and responses to risk of frequent large fires.</td>
</tr>
<tr>
<td>Barred galaxias Galaxias fuscus</td>
<td>Endangered</td>
<td>Threatened (Endangered)</td>
<td>Recovery Plan; Action Statement</td>
<td>Habitat protection; improved habitat management – fire management and forest management prescriptions – within supporting catchment.</td>
</tr>
<tr>
<td>Baw Baw frog</td>
<td>Endangered</td>
<td>Threatened (Critically)</td>
<td>Recovery Plan; Action</td>
<td>Improved habitat management – fire management and forest management prescriptions – within supporting catchment.</td>
</tr>
</tbody>
</table>
8.3.2 Social and economic considerations

The implementation of this Recovery Plan will have substantial social and economic benefits and costs. The benefits relate mainly to carbon storage and greenhouse gas abatement, water yields and quality, tourism, recreation, inspiration, and reduction in the likelihood of destructive fire. The costs relate mainly to reduced access to timber resources. In turn, these costs and benefits may have broader flow-on impacts on communities in the Central Highlands.
The pre-eminent purpose of this Recovery Plan is to stop the decline and support the recovery of the Leadbeater’s possum so that its chances of long-term survival in nature are maximised. Actions to achieve this largely centre on protecting and enhancing known and prospective suitable habitat. Almost all of the known distribution of Leadbeater’s possum is on public land managed as state forest or as conservation reserves and therefore subject to various public policy, regulatory and management action with associated costs and benefits to the community.

The management of state forests in Victoria aims to balance uses and values, including sustainable timber production, water production, tourism, recreation, carbon sequestration and biodiversity conservation. These forests provide a range of economic benefits including those derived through income, employment, and various goods and services.

Ash forests are highly valued for timber harvesting in Victoria. Approximately 70% of VicForests’ annual ash timber supply is sourced from within the range of the Leadbeater’s Possum (Leadbeater’s Possum Advisory Group 2014a). In 2013-14, the native timber industry in the Central Highlands RFA area of Victoria generated $573 million in revenue, with $76 million in direct income, and $497 million in the community whose economy is reliant on the timber industry from this region (Deloitte Access Economics 2015). Native timber harvesting supported 405 full time equivalent jobs within the Central Highlands RFA area community and a further 1,712 full time equivalent jobs within the wider community.

Approximately 62,600 ha (31 per cent) of the ash forests within the Leadbeater’s Possum range are potentially available for timber harvesting (Leadbeater’s Possum Advisory Group 2014a). The implementation of Recovery Plan actions to enhance habitat protection through the expansion of the reserve system together with improved forest management prescriptions is highly likely to reduce the area of forest available for timber harvesting (Lindenmayer et al. 2016). This has economic implications for the timber industry and the communities that in part depend on it.

Enhanced habitat protection and augmentation, and improved fire management across the core Leadbeater’s possum range is likely to benefit the mountain ash forest ecological community. Apart from the wider biodiversity benefits this will bring, it will also have positive impacts on the quality and yield of water. Forests provide vital hydrological service in Victoria in supplying drinking water to many communities (Department of Environment and Primary Industries 2014e). The mountain ash forests are significant catchment areas for Melbourne’s water supply. Ash forests cover just under half this area, but yield 80% of the streamflow because they grow on the higher rainfall sites (Benyon et al. 1996). Approximately 20% of the mountain ash forest of this area is in closed water catchments, parts of which are also managed as the Yarra Ranges National Park (Viggers et al. 2013).

There is a well-documented empirical relationship between stand age and water yield for mountain ash forested catchments in the Central Highlands: catchments dominated by large old trees and old-growth forests yield significantly more water than catchments comprising primarily young forest (Vertessey et al. 2001; Viggers et al. 2013). Climatic conditions, natural disturbances (bushfires) and human activities (timber harvesting) in these forests all contribute to variation in water yields including reduced streamflow (Benyon et al. 1996; Creedy and Wurzbacher 2001; Feikema et al. 2010). Large intense bushfires can have serious, long lasting effects on water yield from ash forests (Lane et al. 2010; Feikema et al. 2013; Department of Environment and Primary Industries 2014e). Immediately following bushfires, water yields from rain events may increase due to
reductions in vegetative cover and increased runoff. As vegetative cover returns, its use of available water increases, lowering water inputs into streams. Regrowth ash forests use a greater amount of water than mature ash forests, and reduced water yield characteristics from these forests after bushfires persist for many decades (Benyon et al. 1996). Projected changes in rainfall runoff and fire frequency due to climate change are likely to have important implications for the management of forested catchments. Multiple fire events can result in a perpetually regenerating, high water using forest (Springa et al. 2005; Feikema et al. 2013).

Forests are an important component of the global carbon cycle, and maintaining or increasing forest carbon stocks is a key indicator of sustainable forest management (Department of Environment and Primary Industries 2014e). Management of native forests offers opportunities to store more carbon in the land sector and in contributing to global climate change mitigation.

However, the circumstances under which forest management provides mitigation benefits varies and is not universal and the relative benefits for carbon storage of managing native forests for wood production versus protection are contested (Keith et al. 2015; Ximenes et al. 2016). Different conclusions about mitigation benefits of forest management strategies have been reported which in part reflect site specific conditions as well as differing methodologies and underlying assumptions used in the models. A number of studies have attempted to quantify the overall mitigation implications of native forest harvesting for Australian forests – for example in New South Wales (Ximenes et al. 2012), Tasmania (Dean et al. 2012) and in the mountain ash forests in Victoria (Keith et al. 2014a; Keith et al. 2014b) – with different authors arriving at opposing conclusions regarding the net emissions costs and/or benefits of harvesting compared with non-harvesting.

Consistent with the implementation of many threatened species recovery programs, there are also potential social benefits for communities engaged in such programs. Leadbeater’s possum in particular has high social value as one of Victoria’s two state terrestrial faunal emblems and has substantial community profile and interest and is the focus of community conservation action. A long term collaborative effort by the community in working towards the successful recovery of an iconic critically endangered species, could have significant positive social benefit and serve as a model to engage communities more broadly in threatened species conservation.

Economic benefits can potentially be derived from the implementation of a more coordinated policy and management response to Leadbeater’s possum recovery through an improved whole of landscape approach. This approach, with a proposed mix of initiatives in dedicated reserves and in state forest, supported by enhanced fire management and habitat augmentation, is a mechanism to improve coordination and enhance collaboration between stakeholders. There is potential that this will lead to efficiencies in coordinated action and more targeted investment across the landscape.

8.4. Affected interests

Listed below are key interested parties that may be involved in the development, implementation and review of the Leadbeater’s possum Recovery Plan, and/or organisations likely to be affected by implementation of the actions proposed in this plan.
Government Agencies

- Department of Agriculture, Commonwealth
- Department of Economic Development, Jobs, Transport and Resources, VIC
- Department of the Environment, Commonwealth
- Department of Environment, Land, Water and Planning, VIC (including the Arthur Rylah Institute for Environmental Research)
- Melbourne Water
- Office of the Threatened Species Commissioner, Commonwealth
- Parks Victoria
- VicForests
- Zoos Victoria

Indigenous Groups

- Gunaikurnai Land and Waters Aboriginal Corporation
- Taungurung Clans Aboriginal Corporation
- Wurundjeri Tribe Land and Compensation Cultural Heritage Council Inc.

Industry Groups

- Australian Forest Products Association
- Victorian Association of Forest Industries

Non-government organisations and community groups

- Australian Conservation Foundation
- Field Naturalists’ Club of Victoria
- Friends of the Helmeted Honeyeater
- Friends of the Leadbeater’s Possum
- MyEnvironment
- Regional tourism businesses
- The Wilderness Society
- Victorian National Parks Association

Universities

- Australian National University
- Monash University
- University of Melbourne
8.4.1. Role and interest of Indigenous groups

Consultation on the development and implementation of the Leadbeater’s Possum Recovery Plan is being undertaken with the Gunaikurnai, Taungurung and Wurundjeri Indigenous communities whose traditional lands overlap with the range of the Leadbeater's possum.

9. ACKNOWLEDGEMENTS

This plan was compiled by the Department of the Environment, with contributions from Professor John Woinarski (Threatened Species Recovery Hub of the National Environmental Science Programme, and Charles Darwin University) and Dr Lindy Lumsden (Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning), with important input from Victorian state government agencies. It benefited from substantial advice from key stakeholders from the environment, science and forestry sectors.

10. ACRONYMS AND DEFINITIONS

10.1. Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARI</td>
<td>Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning</td>
</tr>
<tr>
<td>ANU</td>
<td>Australian National University</td>
</tr>
<tr>
<td>CAR</td>
<td>Comprehensive, Adequate and Representative (for the reserve system)</td>
</tr>
<tr>
<td>DotE</td>
<td>Department of the Environment</td>
</tr>
<tr>
<td>DELWP</td>
<td>Department of Environment, Land, Water and Planning (Vic)</td>
</tr>
<tr>
<td>EPBC Act</td>
<td>Environment Protection and Biodiversity Conservation Act 1999</td>
</tr>
<tr>
<td>ESU</td>
<td>Evolutionarily Significant Unit</td>
</tr>
<tr>
<td>GMZ</td>
<td>General Management Zone</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Remote sensing technology that measures distance by illuminating a target with a laser and analysing the reflected light</td>
</tr>
<tr>
<td>LPAG</td>
<td>Leadbeater’s Possum Advisory Group</td>
</tr>
<tr>
<td>MNES</td>
<td>Matters of National Environmental Significance</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-government organisation</td>
</tr>
<tr>
<td>PV</td>
<td>Parks Victoria</td>
</tr>
<tr>
<td>PVA</td>
<td>Population viability analysis</td>
</tr>
<tr>
<td>RFA</td>
<td>Regional Forest Agreement</td>
</tr>
<tr>
<td>SMZ</td>
<td>Special Management Zone</td>
</tr>
<tr>
<td>SPZ</td>
<td>Special Protection Zone</td>
</tr>
<tr>
<td>TSSC</td>
<td>Threatened Species Scientific Committee</td>
</tr>
</tbody>
</table>
10.2. Definitions

The following definitions help explain or clarify some technical terms used in the body of this plan. Where appropriate, definition of some of these terms have been sourced from the Leadbeater’s Possum Advisory Group Technical Report 2014 (Leadbeater’s Possum Advisory Group 2014b).

Buffer area – a circumscribed distance or area around a particular feature, whose protection from a designated threat helps to protect the feature itself.

Bushfire – under the Victorian Code of Practice for Bushfire Management on Public Land, a bushfire is defined as a general term used to describe a fire in any vegetation. Within this plan, the term bushfire is used exclusively for wildfires (i.e. those triggered through natural processes, lightning, accidental or deliberate human ignition) and does not encapsulate planned burning activities.

CAR reserve system – “The CAR (comprehensive, adequate and representative) reserve system comprises areas of both public and private land that are reserved specifically for conservation purposes, and where the tenure of the reserved areas is secured by legislation or other methods appropriate for the area concerned…… All reasonable effort should be made to provide for biodiversity and old-growth forest conservation and wilderness in the Dedicated Reserve system on public land. However, where it is demonstrated that it is not possible or practicable to meet the criteria in the Dedicated Reserve system, other approaches will be required” (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Subcommittee 1997).

Central Highlands – the higher elevation forested area to the north-east of Melbourne broadly encapsulated by the Central Highlands Regional Forest Agreement Area. In this plan the Central Highlands population of Leadbeater’s possum represents the montane ash and snow gum habitat and does not include the lowland population at Yellingbo.

Clearfall / clear-felling – silvicultural method of harvesting a coupe whereby all merchantable trees, apart from those to be retained for wildlife habitat, are removed.

Colony – for Leadbeater’s possum, a social group that dens together, comprising a breeding pair and associated non-breeding individuals.

Coupe – as defined in the Victorian Sustainable Forests (Timber) Act 2004 means a specific area of state forest identified for the purposes of a timber harvesting operation in a timber release plan from which timber is harvested in one operation.

Dedicated reserves – “Reserves where the management regime equates to specific protected area management categories defined by the IUCN Commission for National Parks and Protected areas (1994). [Categories I, II, III and IV]. Security of tenure, as demonstrated if Parliamentary action by Commonwealth, State or Territory Governments is required for revocation of the reserve, is fundamental to the establishment and management of formal reserves” (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Subcommittee 1997).

Dynamic modelling – modelling that includes consideration of changes over time in, for example, habitat availability and suitability, population size and dispersion, and viability, with such changes driven by fire and other disturbance events.

Evolutionarily Significant Unit – is a set of populations that are morphologically and genetically distinct from other similar populations, with such distinction arising from a distinct evolutionary history.
Exclusion zone – an area within the GMZ or SMZ where timber harvesting operations are excluded.

Exudate – a sugar-rich substance secreted by plants or by hemipteran insects feeding from plants, important in the diet of Leadbeater’s possum.

Fire regimes – the characteristic pattern of frequency, intensity, extent and timing of fires in a given area or habitat.

Gene pool mixing - the mixing of genetically divergent lineages/populations of a species to rescue and restore genetic variation in populations that have undergone large reductions in genetic diversity and fitness.

General Management Zone (GMZ) – areas within state forest that are managed for a range of uses and values, with the sustainable production of timber and other forest products being a major use. Within the GMZ there are areas that are excluded from harvesting operations due to the requirements of the Code of Practice for Timber Production. These areas include stream buffers and slopes generally steeper than 30°.

Hollow-bearing tree – any tree, dead or live, that contains a hollow of any shape or size.

In-field prescriptions – harvesting exclusion rules established to protect forest values found in proposed coupes during planning processes and field inspections, which may not result in a zoning amendment.

Informal Reserves – “Reserves that contain and are managed for conservation values which unequivocally contribute to the CAR system. Such reserves have a sound basis in legislation (e.g., management plans required under legislation) with provision of opportunity for public comment on changes to reserve boundaries, and where decisions on their establishment and alteration are politically accountable. In addition, they must be able to be accurately identified (on maps), and of sufficient area and adequate design to contribute to the continued viability of the values they seek to protect” (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee 1997). Special Protection Zones (SPZs) are Informal Reserves.

Leadbeater’s Possum Advisory Group – in 2013, the Victorian Government established the Leadbeater’s Possum Advisory Group to provide recommendations aimed at supporting the recovery of the possum while maintaining a sustainable timber industry.

Leadbeater’s Possum Reserve – an area in the Central Highlands of 30,500 hectares set aside in 2008 specifically for Leadbeater’s possum conservation, of which 58% is within national parks and 42% reserved in SPZs in state forest. The reserve consists of 127 patches spread across the species’ range. Each patch was greater than 50 ha in size and contained predominantly old-growth ash forest, as they were the areas most likely to provide habitat into the future.

Lowland swamp forests – forest dominated by mountain swamp gum *Eucalyptus camphora* with dense thickets of *Melaleuca* and *Leptospermum* species.

Montane ash forest – forest dominated by mountain ash *Eucalyptus regnans*, alpine ash *E. delegatensis* and/or shining gum *E. nitens*.

National Park – an area of permanently reserved land or water managed by Parks Victoria under the Victorian *National Parks Act 1975*. The objectives of the Act are the permanent preservation and protection of the natural environment and indigenous flora and fauna, as well as natural, cultural and other features.
Occupancy model – a modelling technique used to predict where a species is likely to occur based on environmental parameters and reflecting the impact of disturbances.

Old-growth forest – forest which contains significant amounts of its oldest growth stage – usually senescent trees – in the upper stratum and the effects of any previous disturbance is now negligible.

Phylogenetically distinctive species – a species that has few close relatives, for example a species that is the only (extant) species in a genus or family.

Population viability – the maintenance of a population in the wild that is sufficiently large to be resilient to disturbance and maintain its long-term evolutionary potential.

Population viability analysis (PVA) – a modelling technique for the estimation of persistence or extinction probability based on threats to survival.

Potential habitat – all areas of montane ash forests or sub-alpine (snow gum) woodlands within the range of Leadbeater’s possum in the Central Highlands. This includes approximately 200,000 ha of forest, not all of which will be occupied at any point in time.

Regional Forest Agreement (RFA) – In Victoria, an agreement between the Commonwealth and Victorian state government that establishes the framework for the conservation and sustainable management of forests within each of the five Victorian RFA regions. The main objectives of the Victorian RFAs are to identify a Comprehensive, Adequate and Representative (CAR) reserve system and provide for the conservation of those areas; to provide for the ecologically sustainable management and use of forests in each RFA region; and to provide for the long-term stability of forests and forest industries.

Regrowth retention harvesting or variable retention harvesting – the retention within a timber harvesting operation (or coupe) of clusters of trees as habitat ‘islands’ or ‘peninsulas’ such that 50% of the coupe is close to retained forest.

Relictual distribution – the current (remaining) range of a species that formerly had a substantially larger distribution.

Rotation – means the planned number of years between the regeneration of a forest stand and its subsequent harvesting.

Salvage harvesting – harvesting operations conducted to remove timber following wildfire or other major disturbance that has caused significant tree mortality or damage.

Special Management Zone (SMZ) – areas of state forest that cover a range of natural or cultural values and are managed to conserve specific features. The protection or enhancement of these values requires modification to timber harvesting or other land use practices rather than their exclusion. Timber and other forest produce may be harvested from this zone under certain conditions. Periodic zoning reviews are undertaken to ensure SMZs are in the most appropriate locations, including after significant disturbance events such as bushfires.

Special Protection Zone (SPZ) – areas of state forest managed for conservation designed to complement the dedicated reserve system and categorised as Informal reserves. Larger components of the zone are based on representative examples of vegetation communities and old-growth, as well as localities of key threatened and sensitive flora and fauna species. This zone is managed to minimise disturbances or processes that threaten their respective values, and timber harvesting is excluded. Periodic zoning reviews are undertaken to ensure SPZs are in the most appropriate locations, including after significant disturbance events such as bushfires.
Stag – large hollow-bearing tree killed by fire but remaining standing.

Stag-watching – a sampling and monitoring method which involves a set of observers positioned around large hollow-bearing trees and observing the emergence of animals from tree hollows at dusk.

State forest – as defined in section 3 of the Victorian Forests Act 1958, state forest comprises publicly owned land which is managed for the conservation of flora and fauna; for the protection of water catchments and water quality; for the provision of timber and other forest products on a sustainable basis; for the protection of landscape, archaeological and historical values; and to provide recreational and educational issues.

Sub-alpine (snow gum) woodlands – higher elevation (ca. 1400 m) habitat dominated by snow gum *Eucalyptus pauciflora*. Leadbeater’s possum occurs in this habitat mostly where there is a dense mid-storey (particularly of mountain tea tree *Leptospermum grandifolium*) along drainage lines.

Subpopulations – geographically or otherwise distinct groups in the population between which there is little demographic or genetic exchange (typically ‘one successful migrant individual or gamete per year or less’) (IUCN Standards and Petitions Subcommittee 2013). Note that subpopulations may be in close proximity, but interchange of individuals between them may nonetheless be highly constrained because of barriers to dispersal or because dispersal capability is limited. If their isolation is relatively recent, subpopulations may not show substantial genetic distinctiveness.

Suitable habitat – areas of montane ash forests or snow gum woodlands in the Central Highlands considered to provide habitat that is currently suitable for the species to occupy.

Thinning – the removal of part of a forest stand or crop, with the aims of increasing the growth rate and/or health of retained trees and, in commercial thinning, obtaining timber from trees that would otherwise eventually die before final harvest.

Timber harvesting – any activities carried out for the purpose of removing timber for sale, including timber felling, regeneration and associated roading. Not including the collection of firewood for domestic use.

Translocation – the human-mediated movement of living organisms from one area, with release in another (IUCN/SSC 2013). In this Plan, translocation relates to moving of Leadbeater’s possums to seek to establish a new subpopulation, or to bolster numbers (or genetic diversity) in an established subpopulation.

Values Protected by Prescription – “Where the nature of a forest value that is needed to contribute to the CAR reserve system makes inclusion in either Dedicated or Informal Reserves impractical (for example, very rare values, values with fragmented distributions, or values naturally occurring in linear form such as riparian vegetation), then protection may be prescribed in Codes of Practice or Management Plans and where appropriate, identified on maps. These prescriptions should meet the following principles: there is an opportunity for public comment on proposed changes; they have a sound scientific basis; and they are adequate to maintain the values they seek to protect” (Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee 1997).
11. REFERENCES

Anon (1992) 'National Forest Policy Statement: a new focus for Australia's forests.' (Commonwealth of Australia: Canberra)

Dean C, Wardell-Johnson GW, Kirkpatrick JB (2012) Are there any circumstances in which logging primary wet-eucalypt forest will not add to the global C burden? Agricultural and Forest Meteorology 161, 156-169.

Department of Natural Resources and Environment (1998) 'Forest management plan for the Central Highlands.' Department of Natural Resources and Environment, Melbourne.

Department of Sustainability and Environment (2008a) 'Fire salvage harvesting prescriptions March 2008.' Department of Sustainability and Environment, East Melbourne.

Department of Sustainability and Environment (2012) 'Code of Practice for Bushfire Management on Public Land 2012.' Department of Sustainability and Environment, Melbourne.

Harley DKP, Spring DA (2003) Reply to the comment by Lindenmayer et al. on" Economics of a nest-box program for the conservation of an endangered species: a re-appraisal". *Canadian Journal of Forest Research* 33, 752-753.

Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee (1997) 'Nationally agreed criteria for the establishment of a comprehensive, adequate and representative reserve system for forests in Australia.' Canberra.

Lindenmayer DB (1996b) 'Forest pattern and ecological processes: a synthesis of 25 years of research.' (CSIRO Publishing: Collingwood)

Lindenmayer DB, Blair D, McBurney L, Banks S (2013b) 'New restoration forest management prescriptions to conserve Leadbeater’s possum and rebuild the cover of ecologically mature forest in the Central Highlands of Victoria.' Fenner School of Environment and Society The Australian National University Canberra.

Lindenmayer DB, Cunningham RB, Donnelly CF (1993b) The conservation of arboreal marsupials in the montane ash forests of the Central Highlands of Victoria, south-east Australia, IV. The presence and abundance of arboreal marsupials in retained linear habitats (wildlife corridors) within logged forest. *Biological Conservation* **66**, 207-221.

Lindenmayer DB, Cunningham RB, Donnelly CF (1994b) The conservation of arboreal marsupials in the montane ash forests of the Central Highlands of Victoria, south-eastern Australia, VI. The performance of statistical models of the nest tree and habitat requirements of arboreal marsupials applied to new survey data. *Biological Conservation* **70**, 143-147.

Macfarlane M, Smith J, Lowe K (1997) 'Leadbeater’s Possum (*Gymnobelideus leadbeateri*) Recovery Plan.' (Department of Natural Resources and Environment: Melbourne)

Leadbeater’s Possum Implementation Committee.’ Arthur Rylah Institute for Environmental Research Department of Environment, Land Water and Planning Victoria, Heidelberg.

Smith S, Morey J (2001) 'Options for a permanent reserve system for the conservation of Leadbeater’s Possum. Central Highlands of Victoria.' Department of Natural Resources and Environment, East Melbourne.

Viggers JI, Weaver HJ, Lindenmayer DB (2013) 'Melbourne’s water catchments. perspectives on a world-class water supply.' (CSIRO Publishing: Melbourne)

